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Abstract: The iteration of L-system has been used to animate the plant growth but
at each time step of development the plant model is not smooth and continuous.
This paper proposes an animating plant growth in L-system by parametric
functional symbols to the length, size and position of each component of the plant.
The developments of plant growth seems to be smoother and more natural as well
as realistic.  This prototype can be used to generate the realistic model of any plant
based on bracketed L-system.
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1. Introduction
Time-lapse photography reveals the enormous
visual appeal of developing plants, related to the
extensive change in topology and geometry during
growth. Consequently, the animation of plant
development represents an attractive and
challenging problem for computer graphics.

In the previous works, Tong Lin
implemented the animation of L-system in a
3-dimensional space plant growing in Java [13].
Przemyslaw Prusinkiewicz extended L-systems [6]
in manner suitable for simulation to interaction
between a developing plant and its environment.
They developed the plant growth animation by
iterating the L-system but the animation was not
smooth.

This research presents a prototype for
creating computer models that capture the
development of plants using L-systems and
mathematical model incorporating biological data.
L-system is used for qualitative model in order to
represent the plant topology and development.
There are six consecutive steps in this method,
namely, (1) defining a qualitative model
constructed from observations of plant growth in
their life cycle, (2) measurement of key
characteristics collected from actual plants, (3)
converting raw data to growth functions based on
sigmoid function approximations, (4) defining a
quantitative model composed from the qualitative
model and growth function, (5) visualization of the
quantitative model, and (6) model evaluations.

The visualization aids in exposing any
flaws in the qualitative or quantitative models, and
helps identify any incorrectly estimated functions.
This research uses soybean (Glycine max.) for our
case study.

The rest of the paper is organized into 9
sections.  Section 2 summarizes the concept of a
general L-systems.  Section 3 expresses the plant
module design.  Section 4 describes the qualitative
model of plant structure.  Section 5 explains the
data collection from actual plant.  Section 6 shows
the growth function approximation.  Section 7
describes the quantitative model.  Section 8 shows
the visualization and Section 9 discusses model
evaluation.  The conclusion is given in Section 10.

2. L-systems
Lindenmayer systems (L-systems) were first
introduced in 1968 by Aristid Lindenmayer as a
mathematical theory of plant development [1].
They have attracted the attention of the computer
scientists who investigated them through formal
language theory [1].  Smith proposed using
L-systems as a tool for creating computer generated
images of plants.  Specialists in computer graphics,
particularly Prusinkiewicz have used the L-systems
to produce realistic image of trees, bushes, and
flowers, and some of image are well illustrated in
The Algorithmic Beauty of Plants [1].

L-systems are formal grammars that
characterized by having a single axiom, no terminal
symbols and by performing all possible symbol
replacements in parallel for each step.

A simple L-system called “turtle”[1] is
introduced to illustrate how L-system is used to
describe some structures.

The basic idea of turtle interpretation
described by Prusinkiewicz and Hanan [1] is given
below. A turtle can move in any direction, either
forward, backward, rightward, or leftward. Each
movement is defined using five primitive symbols,
namely I, +, -, [, and ].  Symbol I denotes one unit
length of movement which can be in any direction.
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The direction is defined by symbols + and -.
Symbol + denotes to movement in counter-
clockwise direction while symbol – denotes the
movement in clockwise direction. A branch is
defined by symbols [ and ]. Symbol [ denotes the
begin of branch and symbol ] denotes to the end of
branch.  The movement can be transformed to a
Cartesian coordinate system described by a triplet
(X,Y,α), where X and Y indicate the coordinate of
the movement and α indicates the initial angle of
the first unit movement with respect to the Y axis.
α can be either positive or negative. The other unit
movement can have their directional angles
computed by adding or subtracting a constant δ to
the initial angle α. Similarly to the initial angle α,
the computed angle is rotated with respect to Y
axis. Figure 1 shows an example of how symbols I,
+, -, [, ] are used to describe the movement of a
turtle with the XY coordinates and the directional
angle α. Here we set α to -10 degrees and δ to 30
degrees.

In case of a three dimensional movement,
a turtle is free to move in any X, Y, or Z direction.
Hence, the directional angles in this case become
three. Initial three directional angles, αx, αy, αz  o f
the first unit movement are set with respect to X, Y,
and Z axes, respectively. The directional angles of
the other unit movements are computed in a similar
fashion to that of the two dimensional case. Three
constants, δx, δy, δz, are used to adjust the direction
of the unit movements. In addition, the physical
location of the unit movement I previously defined
must be represented an XYZ coordinates.
Therefore, a unit movement described in the
Cartesian coordinate system is denoted by a
hexaplet (X,Y,Z,αx,αy,αz). After adding/subtracting
δx, δy, δz, the new XYZ coordinates of the
movement is computed by multiplying the
coordinates of the current movement with the
rotation matrices Rx, Ry, Rz shown in Figure 2. The

rotation of a unit movement and its direction are
captured in a symbolic form similar to that in the
two dimensional case by using these symbols /, \,
&, ^, +, -, |. The meaning of each symbol is
explained in Table 1.

Symbols Meaning
I It is used to generate the plant

internodes.
i It is used to generate the plant short

internodes.
P It is used to generate the plant petioles.
p It is used to generate the plant short

petioles.
A It is used to generate the plant apices.
L It is used to generate the plant leaves.
F It is used to generate the plant flowers.
+ Turn left by angle δz, using rotation

matrix Rz(δz).
- Turn right by angle δz, using rotation

matrix Rz(-δz).
& Pitch down by angle δy, using rotation

matrix Ry(δy).
^ Pitch up by angle δy, using rotation

matrix Ry(-δy ).
\ Roll left by angle δx, using rotation

matrix Rx(δx).
/ Roll right by angle δx, using rotation

matrix Rx(-δx).
| Turn around, using rotation matrix

Ry(180).
[ Push the current state to stack. It is used

to set the degree of the plant branch.
] Pop the current state from stack.

Table 1: Symbols used in plant growth L-system

An example of a simple turtle in a 3-dimensional
space is given below.
(δx = δy = δz = 70, αx = αy = αz = 0)

I[-I]I[+I]I[/I]I[\I]II

Figure 1: Example of simple
2-dimensional space L-system
I[+I]I[-I]I[+I]I
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We define the symbol I for an internode of
a plant. An example has ten internodes, six
internodes for main stem, and four internodes of
petiole in each direction. The visualized image is
shown in Figure 3.

3. Plant module design
The L-system description of a plant is defined in
forms of a set of iterations, set of directional and
sizing parameters, initial string, a set of production
rules, and a set of  terminating productions. This
description has the following format.

Plant_Name {
Iterations=N
Angle=δ
Diameter=D
Axiom=ω
Production 1
Production 2
…
Production n
Endrule
Endproduction 1
Endproduction 2
…
Endproduction m

}

The meaning of  each keyword is given as follows:

Plant_Name
Plant_Name is a name of plant module.

Iterations=N
This input sets the number of iterations for

selecting and rewriting the production rules. Each
production rule is selected according to the
appearance of the symbols in the current string. N
is an integer greater than –1.

Angle=δ
This angle(δ) is used to set the angle of a

the branch. For example, ‘-’ is to turn right by an

angle δ, ‘^’ is to pitch up by an angle δ, and ‘/’ is to
roll right by an angle δ.

Diameter=D
This diameter is used to set the diameter of

the first internode.

Axiom=ω
This string is used to set the start status of

the plant. Every start stem is located at the origin
(0,0,0), and pointed towards the positive Y axis.
The three angles for a 3-dimensional space
(αx,αy,αz) are set to zero for the first internode.

Production 1… Production n
Each production consists of a predecessor

and a successor. The format of production is given
below.

Predecessor=Successor
The predecessor is a symbol and the successor is a
symbol string.

Endrule
To terminate the rewriting of a production

rule, a terminating symbol must be substituted to
the corresponding symbol used by the previously
called production rule. The substitution rules are
defined in the endproduction 1 to endproduction m.
The endproduction rules are called at the Nth

iteration.

Endproduction 1 ... Endproduction m
The format of endproduction is the same

as that of production. The endproduction is used to
prevent some symbol that is not F, I, i, P, p, L, or
A.

Character”{“ and  "}"
The character “{“ and "}" are the begin

and end of L-systems structure, respectively.

4. Qualitative model
The modeling process begins with the specification
of the qualitative model. It captures the aspects of a
plant which can be obtained through the
observations and are deemed essential to its form
and development. These include the topology and
the sequence of activities of various plant modules.
The main components of the plant are distinguished
and their developmental stages are identified. The
connections between these components are also
defined.  In this paper, we obtain the qualitative
parameters from a soybean.

The qualitative parameters of the soybean
model consists of three main parts: internodes,
petioles, and leaves. The simulation begins with
first pair of leaves. This is captured by the L-system
axiom, or the initial string of modules. The axiom
in Figure 4 represents an internode, a pair of leaves
and its short internode, and an apex. The apex A is

Figure 3: A simple L-system
Interpretation
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initially contained within the petioles. After some
iterations, the apex A is substituted by an internode
I, a right petiole P, an internode I, a left petiole B
and an apex A  shown by the following production
rule.

A = I[-P]I[+B]A

Each petiole consists of some internodes,
some short petioles, a left leaf, a right leaf, and a
middle leaf. The production rules of the left and
right petioles are defined as follows.

P = IIII[\pL][/pL][-pL]
B = IIII[\pL][/pL][+pL]

The “Endrule” is defined as follows.

B = IL
P = IL
A = IL

The above Endrules are called at the last
iteration. The left petiole (B) as well as the right
petiole (P) and the apex (A) are substituted by an
internode and a leaf.

By using the previously defined
production rules with some specific parameters, the
L-system description of a soybean is given in the
following format.

Soybean {
Iterations=6
Angle=45
Diameter=1.5
Axiom=I[+iL][-iL]A
A = I[-P]I[+B]A
P = IIII[\pL][/pL][-pL]
B = IIII[\pL][/pL][+pL]
Endrule
B = IL
P = IL
A = IL

}

In the above L-systems code, the number
of iteration is six; the initial branch angle is 45
degrees, and the diameter of first internode is 1.5
centimeters. After the sixth iteration, the Endrule

productions are called to terminate the substitution
process.

5. Data collection
The data of each component are collected from an
actual soybean plant. They are the internodes
length, diameter, leaves length and width, flowers,
petioles length corresponding to the time of its life
cycle. The actual data are obtained from five
soybeans everyday for 61 days. The raw data will
be used for approximating to the sigmoidal growth
function. The data of soybean are collected
manually using  rulers and a protractor.

6.  Growth function
The raw data in Section 5 is approximated as a
growth function in Figure 5 using a sigmoidal curve
approximation.

The raw data is converted to growth
function G(t) of length or width at time t and is
given below.

where

L : the minimum value of length or width,
U : the maximum value of length or width,
m : the approximated slope of raw data,
T : the time at (U – L)/2
t : the independent time variable

Besides the growth function, there is
another function which we use to control all the
components of the plant topology, such as the
length of each internode from the first internode to
the last internode. The function is

Yi = c(a)ni

where Yi is the length of internode i, c is a
constant, a is a real value greater than zero, and ni is
the level of internode i.

Figure 4: Axiom = I[+iL][-iL]A

Figure 5: Sigmoidal curve approximation
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The initial time of each component is
specified by the following linear equation.

Bi = βni + b

where Bi is the initial time of component i, β is the
acceleration rate of Bi, ni is the level of component
i, and b is a constant.

Every component of plant is controlled by
a self-growth function likes the one shown in
Figure 3 with either same or different slope m, time
T, the maximum U, and the minimum L.

Figure 6 illustrates a graphical image of a
soybean drawn from the L-system string defined in
the production rules in Section 4. Figure 6(a) shows
the string of L-system obtained after the rewriting
process. The plant structure in Figure 6(b) is
constructed from the L-system string shown in
Figure 6(a) and its graphical image of the axiom of
the plant is illustrated in Figure 6(g). Figure 6(d)
gives the details a part of soybean. Figure 6(c) is
the left petiole component.  The right petiole is
shown in Figure 6(e).  In Figure 6(f), the raw data is
converted to the growth function corresponding to
each symbol.

7. Quantitative model
The quantitative model combines the L-system
output string with the approximated growth
functions of each component. The plant model can
simulate its growth with continuous development in
virtual reality form.

8.  Visualization
The visualization of a soybean is shown in
vegetative state. Cylinders are used to represent
internodes and petioles segments. Spheres are used
to represent jointed internodes. Triangular polygons
are used to represent leaves and flowers. Figure 7
shows some selected stages of the development of a
soybean shoot controlled by the production rules
defined in Section 4. The developments in Figure 7
are started at time t = 20 according to the sigmoidal
curve in Figure 5.

Figure 8 shows various different plant
structures with the same topology of L-system
under different parameters. The L-system code of
Figure 8 is given below.

Plant1{
     Iterations=8
     Angle=15
     Diameter=0.8
     Axiom= I[-1][+1][/2][\2][^1][^^1][^\-1][^^\-1]
[^2][^^2]
     1=I[/iL][\ iL]1
     2=I[-iL][+iL]2
     endrule
     1=IF
     2=IF
}

All plants are generated using eight
iterations.  Although the same production rules are
applied to the plants, it is remarkable that they look
like different species. The symbol L and F are
linked from our leaf and flower library which are
created prior to the generation.

9. Model evaluation
Our system has the capability to interactively
adjusting the parameters of the plant model. This
allows the designer to verify the production rules
and to modify the appearance of the graphical
image of the generated plant in a real time mode. In
addition, if there are any flaws present in the plant
model due to the production rules the designer can
edit the rules and recompile the L-system
description.

10.  Conclusions
A prototype program called PlantVR has presented
for creating the continuous development of plant
models by parametric functional symbols based on
the bracketed L-systems using soybean model as a
case study. The optional Endrule key word is added
to the L-systems in order to prevent some symbols
that is not defined for plant definition in Table 1.
The visualization technique makes the plant look
more realistic and every component can be
controlled by a mathematical function. This
prototype can be used to generate the realistic
model of any plant that has life cycle similar to
soybean. The visualized image and animation of
plant development can be visited at this web site:
http://www.avic.sc.chula.ac.th/plantvr/index.htm
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Figure 6: Structure of simulation generated from the production rules of soybean in Section 4
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Figure 7: Simulation and visualization of Soybean shoots expansion over 61 days
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Figure 8: Different parameters of same topology of L-system
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