List of Figures

		Page
Figure 1.1	The development example of L-system	2
Figure 3.1	Construction of the snowflake curve	10
Figure 3.2	Example of a derivation in a DOL-system	11
Figure 3.3	Development of a filament (Anabaena catenula) simulated	
	using a DOL-system	12
Figure 3.4	Turtle Interpretation of String	13
Figure 3.5	Generating a quadratic Koch island	14
Figure 3.6	Controlling the turtle in three dimensions	16
Figure 3.7	Bracketed string representation of an axial tree	17
Figure 3.8	Example of plant-like structures generated by bracketed	
	OL-systems	19
Figure 3.9	A three-dimensional bush-like structure	20
Figure 3.10	Construction of the E-curve on the square grid	22
Figure 3.1	1.Recursive construction of the Hilbert curve in term of	
	replacement	22
Figure 3.12	2 The initial sequence of strings generated by the parametric	
	L-system specified in prototype 3.2	25
Figure 4.1	Diagram of plant simulation and visualization	27
_	A simple L-system Interpretation	29
•	Axiom = I[+iL][-iL]A	32
Figure 4.4	The component order of L-system string	33
Figure 4.5	All internodes and petioles	35
	All internodes number	36
_	The parent of each internode and petiole	37
Figure 4.8	The level of each component	39
Figure 4.9	The visualize after adding leaf and flower to the system	39
•	The top view of <i>Plant2</i> prototype	40
Figure 4.1	The internode and petiole of soybean at second iteration	41

	Page
Figure 4.12 The internode and petiole order number	41
Figure 4.13 The level of all internode and petiole	42
Figure 4.14 The soybean and its leaves	42
Figure 4.15 The top view of the soybean	43
Figure 4.16 The soybean physiology	51
Figure 4.17 Internode data	52
Figure 4.18 Petiole length data	52
Figure 4.19 Leaf length and width data	53
Figure 4.20 Sigmoidal curve approximation	53
Figure 4.21 An algorithm for calculation the sigmoidal curve	55
Figure 4.22 The approximated growth function of I , i , P , p , L , and A	57
Figure 4.23 The Structure of simulation generated from the production	
rules of soybean in Section 4.3	58
Figure 4.24 Internode of plant topology	59
Figure 4.25 Internode plant	59
Figure 4.26 The cylinder and sphere argument	60
Figure 4.27 The petiole and the main stem of plant topology I-I][+I]I	61
Figure 4.28 The leaf of plant topology	64
Figure 4.29 A simple plant with its leaves I[-iL][+iL]A	65
Figure 4.30 A simple plant with its leaves and flower: I[-iL][+iL]IiF	66
Figure 4.31 Some flower plant topology	66
Figure 4.32 The texture coordinate	67
Figure 4.33 A texture mapping with leaf polygon	68
Figure 4.34 The leaf texture mapping	68
Figure 4.35 A simple plant with its leaves and flowers	69
Figure 4.36 Plant and their component with textured leaves	70

		Page	
Figure 4.37 A soybean textured leaves with <i>Soybean</i> prototype using Two			
	iterations	70	
Figure 4.38	The soybean as follows Section 4.3 using 6 iterations	71	
Figure 4.39 The soybean as follows Section 4.3 using 6 iterations with			
	Textured leaves	71	
Figure 5.1	Simulation and visualization of Soybean shoots expansion		
	Over 61 days	76	
Figure 5.2	Different parameters of same topology of L-system	77	
Figure 5.3	The spiral plant	80	
Figure 5.4	The spiral plant with new the different leaves and flowers	80	
Figure 5.5	The simple tree	81	
Figure 5.6	The applied soybean plant	82	
Figure 6.1	The plant growth using L-studio software at time=5 to t=46 $$	84	
Figure 6.2	The plant growth using L-studio software at time=47 to t=88 .	85	
Figure 6.3	The plant growth using PlantVR software at time=5 to t=46		
	with growth rate 4.0	86	
Figure 6.4	The plant growth using PlantVR software at time=47 to t=88		
	with growth rate 4.0	87	
Figure 6.5	The visualized image of axiom	90	
Figure 6.6	The plant growth using PlantVR software at time t=5 to t=46		
	with growth rate 1.70	91	
Figure 6.7	The plant growth using PlantVR software at time t=47 to t=88		
	with growth rate 1.70	92	