
Chapter 3

Lindenmayer Systems

This chapter describes the classes of Lindenmayer Systems.  Lindenmayer

systems (L-systems) were conceived as a mathematical theory of plant development.

Originally, they did not include enough detail to allow for comprehensive modeling of

higher plants.  The emphasis was on plant topology, that is, the neighborhood

relations between cells or larger plant modules.  Their geometric aspects were beyond

the scope of the theory.  Subsequently, several geometric interpretations of L-systems

were proposed with a view to turning them into a versatile tool for plant modeling.

3.1 Rewriting systems

The main concept of L-systems is rewriting.  The rewriting is a technique for

defining complex objects by successively replacing parts of a simple initial object

using a set of rewriting rules or productions [27].  The classic example of graphical

object defined in terms of rewriting rules is the snowflake curve in Figure 3.1,

proposed in 1905 by von Koch [27].  Mandelbrot restates this construction as follow:

One begins with two shapes, an initiator and a generator.  The latter is an

oriented broken line make up of N equal sides of length r.  Thus each stage of the

construction begins with a broken line and consists in replacing each straight interval

with a copy of the generator, reduced and displaced so as to have the same end points

as those of the interval being replaced.



10

In 1968 a biologist, Aristid Lindenmayer, introduced a new type of string-

rewriting mechanism, subsequently termed L-systems [27].  The essential difference

between Chomsky grammars and L-systems lies in the method of applying

productions.  In Chomsky grammars productions are applied sequentially, whereas in

L-systems they are applied in parallel and simultaneously replace all letters in a given

word.  This difference reflects the biological motivation of L-systems.  Productions

are intended to capture cell divisions in multi-cellular organisms, where many

divisions may occur at the same time.  Parallel production application has an essential

impact on the formal properties of rewriting systems.

3.2 Deterministic and Context-Free L-systems

This section presents deterministic and context-free L-systems (DOL-systems)

which are the simplest class of L-systems.  The discussion starts with an example that

introduces the main concept in intuitive terms.

Consider strings built of two symbols a and b, which many occur many times

in a string.  Each symbol is associated with a rewriting rule.  The rule a à ab means

that the letter a is to be replaced by the string ab, and the rule b à a  means that the

letter b is to be replaced by a.  The rewriting process starts from a distinguished string

called the axiom.  Assuming that it consists of a single letter b.  In the first derivation

step (the first step of rewriting, n=1), the axiom b is replaced by a using production

Figure 3.1: Construction of the snowflake curve.
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b à a.  In the second step (n=2) a is replaced by ab using production a à ab.  The

word ab consists of two letters, both of which are simultaneously replaced in the next

derivation step.  Thus, a is replaced by ab, b is replaced by a, and the string aba

results.   In a similar way, the string aba yields abaab which in turn yields abaababa,

then abaababaabaab, and so on as illustrated in Figure 3.2.

n = 5
ω  : b
p1 : a à ab
p2 : b à a

Formal definitions describing DOL-systems and their operation are given

below.  For more details see [27].  Let V denote an alphabet, V* the set of all words

over V.  A string OL-system is an ordered triplet G = <V,ω ,P>  where V is the

alphabet of the system, ω ∈ V+ is a nonempty word called the axiom and P ⊂ V X V*

is a finite set of productions.  A production (a,χ) ∈ P is written as a à χ.  The letter a

and the word χ are called the predecessor and the successor of this productions,

respectively.  It is assumed that for any letter a ∈ V, there is at least one word χ ∈ V*

such that a à χ.  If no production is explicitly specified for a given predecessor a∈ V,

the identity production a à a is assumed to belong to the set of productions P.  An

OL-system is deterministic (noted DOL-system) if and only if for each a ∈ V there is

exactly one χ ∈ V* such that a à χ.

Let µ = a1…am be an arbitrary word over V.  The word ν = χ1…χm ε V* is

directly generated by µ, noted µ à ν, if and only if ai à χ1 for  all   i = 1,…,m.        

Figure 3.2: Example of a derivation in a DOL-system.
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A word ν is generated by G in a derivation of length n if there exists a developmental

sequence of words µ0,µ1,…,µn such that µ0 = ω, µn = ν  and µ0 à µ1 à …à µn.

The following example provides another illustration of the operation of DOL-

systems.  The formalism is used to simulate the development of a fragment of a multi-

cellular filament such as that found in the blue-green bacteria Anabaena catenula and

various algae [27].  The symbols a and b represent cytological states of the cells (their

size and readiness to divide).  The subscripts l and r indicate cell polarity, specifying

the positions in which daughter cells of type a and b will be produced.  The

development is described by the following L-system:

n = 4 
ω  : ar

p1 : ar à albr

p2 : al à blar
p3 : br à ar

p4 : bl à al

Starting from a single cell ar (the axiom), the following sequence of words is

generated:

ar

al br

bl ar ar

al al br al br

Figure 3.3: Development of a filament (Anabaena
catenula) simulated using a DOL-system.
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bl ar bl ar ar bl ar ar

.  .  .

Under a microscope, the filaments appear as a sequence of cylinders of

various lengths, with a-type cells longer than b-type cells.  The corresponding

schematic image of filament development is shown in Figure 3.3.   Note that due to

the discrete nature of L-systems, the continuous growth of cells between subdivisions

is not captured by this model.

3.3 Turtle interpretation of strings

In order to model the higher plants, a more sophisticated graphical

interpretation of L-systems in needed.  The first results in this direction were

published in 1974 by Frijters and Lindenmayer, and Hogeweg and Hesper.  In both

cases, L-systems were used primarily to determine the branching topology of the

modeled plants.  The geometric aspects, such as the lengths of line segments and the

angle values, were added in a post-processing phase.  The results of Hogeweg and

Hesper were subsequently extended by Smith, who demonstrated the potential of

L-systems for realistic image synthesis.

The basic idea of turtle interpretation is given below.  A state of the turtle is

defined as a triplet (x,y,α), where the Cartesian coordinates (x,y) represent the turtle’s

position, and the angle α, call the heading, is interpreted as the direction in which the

turtle is facing.  Given the step size d and the angle increment δ , the turtle can

respond to commands represented by the following symbols in Table 3.1.

Start

F

+ -

a b

FFF-FF-F-F+F+FF-F-FFF

Figure 3.4: Turtle Interpretation of String.
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Table 3.1: The two-dimensional turtle interpretation.

Symbols Meaning

F Move forward a step of length d.  The state of the turtle changes to

(x’,y’,α), where x’=x+dcosα and y’=y+dsinα.  A line segment

between points (x,y) and (x’,y’) is drawn.

f Move forward a step of length d without drawing a line.

+ Turn left by angle δ.  The next state of the turtle is (x,y,α+δ).  The

position orientation of angles is counter-clockwise.

- Turn right by angle δ.  The next state of the turtle is (x,y,α-δ).  The

position orientation of angles is clockwise.

Given a string ν, the initial state of the turtle (x0,y0,α0) and fixed parameters d

and δ , the turtle interpretation of ν is the figure (set of lines) drawn by  the turtle in

response to the string ν in Figure 3.4.  Specifically, this method can be applied to

interpret strings which are generated by L-systems.  For example, Figure 3.5 presents

four approximations of the quadratic Koch island.  These figures were obtained by

interpreting strings generated by the following L-system:

ω : F-F-F-F

p : Fà F-F+F+FF-F-F+F

The images correspond to the strings obtained in derivations of length 0 to 3.

The angle increment δ is equal to 90.  The step length d is decreased four times

between subsequent images, making the distance between the endpoints of the

successor polygon equal to the length of the predecessor segment.

Figure 3.5: Generating a quadratic Koch island.
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3.4 Modeling in three dimensions

Turtle interpretation of L-systems can be extended to three dimensions

following the ideas of Abelson and diSeassa [27].  The key concept is to represent the

current orientation of the turtle in space by three vectors

indicating the direction in  X-axis, Y-axis, Z-axis, respectively.  These vectors have

orthorgonal unit vector that satisfy the equation

Rotations of the turtle are expressed by the equation

[X’ Y’ Z’] = [X Y Z] R

where R is a 3x3 rotation matrix.  The rotations by angle è about vectors X, Y, Z are

represented by the following matrices:
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The following symbols control turtle orientation in three-dimensional space as

Figure 3.6:

Table 3.2: The symbol of three-dimensional turtle interpretation.

Symbols Meaning

+ Roll counter-clockwise to positive Z-axis by angle δz, using rotation

matrix Rz(δz).

- Roll clockwise to positive Z-axis by angle δz, using rotation matrix

Rz(-δz).

& Roll counter-clockwise to positive Y-axis by angle δy, using rotation

matrix Ry(δy).

^ Roll clockwise to positive Y-axis by angle δy, using rotation matrix

Ry(-δy).

\ Roll counter-clockwise to positive X-axis by angle δx, using rotation

matrix Rx(δx).

/ Roll clockwise to positive X-axis by angle δx, using rotation matrix

Rx(-δx).

| Turn around, using rotation matrix Ry(180).

+Y

-X

-Z

+

-

\

/

&^

Figure 3.6: Controlling the turtle in three dimensions.
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3.5 Bracketed OL-systems

The definition of tree L-systems does not specify the data structure for

representing axial trees.  One possibility is to use a list representation with a tree

topology.  Alternatively, axial tree can be represented using strings with brackets

[27].  A similar distinction can be observed in Koch constructions, which can be

implemented either by rewriting edges and polygons or their string representations.

An extension of turtle interpretation to strings with brackets and the operation of

bracketed L-systems [27] are described below.

Two new symbols are introduced to delimit a branch.  They are interpreted by

the turtle as follows:

Table 3.3: The bracketed symbols.

Symbols Meaning

[ Push the current state of the turtle onto a pushdown stack.  The

information saved on the stack contains the turtle’s position and

orientation, and possibly other attributes such as the color and width

of lines being drawn.

] Pop a state from the stack and make it the current state of the turtle.

No line is drawn, although in general the position of the turtle

changes.

F[+F][-F[-F]F]F[+F][-F]F

Figure 3.7: Bracketed string representation of an axial tree.
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An example of an axial tree and its string representation are shown in Figure

3.7.  Derivations in bracketed OL-systems proceed as in OL-systems with out

brackets.  The brackets replace themselves.  Examples of two-dimensional branching

structures generated by bracketed OL-systems are shown in Figure 3.8.

Figure 3.8 illustrates some examples of a three-dimensional bush-like structure

generated by a bracketed L-system [27].  Production p1 creates three new branches

from an apex of the old branch.  A branch consists of an edge F forming the initial

internode, a leaf L and an apex A (which will subsequently create three new

branches).  Productions p2 and p3 specify internode growth.  In subsequent derivation

steps, the internode gets longer and acquires new leaves.  This violates a biological

rule of subapical growth, but produces an acceptable visual effect in a still picture.

Production p4 specifies the leaf as a filled polygon with six edges.  Its boundary is

formed from the edges f enclosed between the braces { and }.  The symbols ! and ’ are

used to decrement the diameter of segments and increment the current index to the

color table, respectively.
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Another example of a three-dimensional plat is shown in Figure 3.9.  The

L-systems can be described and analyzed in a similar manner.

(A) n=5,δ=25.7
F
Fà F[+F]F[-F]+F

(B) n=5,δ=20
F
Fà F[+F]F[-F][F]

(C) n=4,δ=22.5
F
Fà FF-[-F+F+F]+[+F-F-F]

(D) n=7,δ=20
X
Xà F[+X]F[-X]+X
Fà FF

(E) n=7,δ=25.7
X
Xà F[+X][-X]FX
Fà FF

(F) n=5,δ=22.5
X
Xà F-[[X]+X]+F[+FX]-X
Fà FF

Figure 3.8: Examples of plant-like structures generated by bracketed
OL-systems.
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3.6 Stochastic L-systems

All plants generated by the same deterministic L-system are identical.  An

attempt to combine them in the same picture would produce a striking, artificial

regularity.  In order to prevent this effect, it is necessary to introduce specimen-to-

specimen variations that will preserve the general aspects of a plant but will modify

its details.

Variation can be achieved by randomizing the turtle interpretation, the

L-system, or both.  Randomization of the interpretation alone has a limited effect.

While the geometric aspects of a plant such as the stem lengths and branching angles

are modified, the underlying topology remains unchanged.  In contrast, stochastic

application of productions may affect both the topology and the geometry of the plant.

A stochastic OL-system is an ordered quadruplet Gπ = <V,ω,P,π>.  The

alphabet V, the axiom ω and the set of productions P are defined as in an OL-system.

n=7,δ=22.7
ω=A
p1 : A à [&FL!A]/////’[&FL!A]///////’[&FL!A]
p2 : F à S/////F
p3 : S à FL
p4 : L à [‘’’^^{-f+f+f-|-f+f+f}]

Figure 3.9: A three-dimensional bush-like structure.



21

Function π : P à (0,1], called the probability distribution, maps the set of productions

into the set of production probabilities.  It is assumed that for any letter a ε V, the sum

of probabilities of all productions with the predecessor a is equal to 1.

We will call the derivation µ à ν a stochastic derivation in Gπ if for each

occurrence of the letter a in the word µ the probability of applying production p with

predecessor a is equal to π(p).  Thus, different productions with the same predecessor

can be applied to various occurrences of the same letter in one derivation step.

A simple example of a stochastic L-system is given below.

The production probabilities are listed above the derivation symbol à.  Each

production can be selected with approximately the same probability of 1/3.  Examples

of branching structures generated by this L-system with derivations of length 5 are

shown in Figure 3.9.  Note that these structures look like different specimens of the

same plant species.

3.7 Edge and Node rewriting

Random modification of productions gives little insight into the relationship

between L-systems and the figures they generate.  However, we often wish to

construct an L-systems which captures a given structure or sequence of structures

representing a developmental process.  This is called the inference problem in the

theory of L-systems.  Although some algorithms for solving it were reported in the

literature [27], the are still too limited to be of practical value in the modeling of

higher plants.  Consequently, the methods introduced below are more intuitive in

nature.  They exploit two modes of operation for L-systems with turtle interpretation,

called edge rewriting and node rewriting using terminology borrowed from graph

grammars [27].  In the case of edge rewriting, productions substitute figures for

polygon edges, while node rewriting, productions operate on polygon vertices.  Both
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approaches rely on capturing the recursive structure of figures and relating it to a

tiling of a plane.  Although the concepts are illustrated using abstract curves, they

apply to branching structures found in plants as well.

Edge rewriting identifies edges as specific types of edges, which the turtle

does not interpret, but the different types of edges affect rewriting rules.

Example:

Node rewriting substitutes new polygons for nodes of the predecessor curve.

Example:

Figure 3.10: Construction of the E-curve on the square grid.
a) Fl   b) Fl à FlFl + Fr + Fr - Fl - Fl + Fr + FrFl - Fr - FlFlFr + Fl -
Fr - FlFl - Fr + FlFr + Fr + Fl - Fl - FrFr +
c) Fr d) Fr à - FlFl + Fr + Fr - Fl - FlFr - Fl + FrFr + Fl + Fr -
FlFrFr + Fl + FrFl - Fl - Fr + Fr + Fl - Fl - FrFr

Figure 3.11: Recursive construction of the Hilbert curve in
term of replacement.
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.2

The curves are generated by either edge or node rewriting method.  As in the

case of edge rewriting, the relationship between node rewriting and tilings of the

plane extends to branching structures.  It offers a method for synthesizing L-systems

that generate objects with a given recursive structure, and links methods for plant

generation based on L-systems.

3.8 Parametric L-systems

Although L-systems with turtle interpretation make it possible to generate a

variety of interesting objects, from abstract fractals to plant-like branching structures,

their modeling power is quite limited.  A major problem can be traced to the reduction

of all lines to integer multiples of the unit segment.  As a result, even such a simple

figure as an isosceles right-angled triangle cannot be traced exactly, since the ratio of

its hypotenuse length to the length of a side is expressed by the irrational number

Rational approximation of line length provides only a limited solution,

because the unit step must be the smallest common denominator of all line lengths in

the modeled structure.  Consequently, the representation of a simple plant module,

such as an internode, may require a large number of symbols.  The same argument

applies to angles.  Problems become even more pronounced while simulating changes

to the modeled structure over time, since some growth functions cannot be expressed

conveniently using L-systems.  Generally, it is difficult to capture continuous

phenomena, since the obvious technique of discretizing continuous values may

require a large number of quantization levels, yielding L-systems with hundreds of

symbols and productions.  Consequently, model specification becomes difficult, and

the mathematical beauty of L-systems is lost.

Parametric L-systems operate on parametric words, which are strings of

modules  consisting of letters  with associated parameters.  The letters belong to an

alphabet V, and the parameters belong to the set of real numbers ℜ.  A module with

letter A ε V and parameters a1,a2,…,an ε ℜ  is denoted by A(a1,a2,…,an).  Every

module belongs to the set M = V X ℜ* , where ℜ*  is the set of all finite sequences of

parameters.  The set of all strings of modules and the set of all nonempty strings are

denoted by M* = (V X ℜ*)* and M+ = (V X ℜ*)+, respectively.
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The real-valued actual parameters appearing in the words correspond with

formal parameters used in the specification of L-systems productions.  If ∑ is a set of

formal parameters, then C(∑) denotes a logical expression with parameters from ∑,

and E(∑) is an arithmetic expression with parameters from the same set.  Both types

of expressions consist of formal parameters and numeric constants, combined using

the arithmetic operators +, -, *, /; the exponentiation operator ^, the relational

operators <, >, =; the logical operator !,&,| (not, and, or); and parentheses ( ).

Standard rules for constructing syntactically correct expressions and for operator

precedence are observed.  Relational and logical expressions evaluate to zero for false

and one for true.  A logical statement specified as the empty string is assumed to have

value one.  The sets of all correctly constructed logical and arithmetic expressions

with parameters from ∑ are noted C(∑) and ε(∑).

A parametric OL-system is defined as an ordered quadruplet G = <V,∑,ω,P>,

where

• V is the alphabet of the system,

• ∑ is the set of formal parameters,

•  ω ε (V X ℜ*)+ is a nonempty parametric word called the axiom,

• P ⊂ (V X Σ*) X C(Σ) X (V X ε(Σ))* is a finite set of productions.

The symbols: and à are used to separate the three components of a

production: the predecessor, the condition and the successor.  For example, a

production with predecessor A(t), condition t > 5 and successor B(t+1)CD(t^0.5,t-2)

is written as

A(t) : t > 5 à B(t+1)CD(t^0.5,t-2). (3.1)

A production matches a modules in a parametric word if the following

conditions are met:

• the letter in the module and the letter in the production predecessor are the

same,

• the number of actual parameters in the module is equal to the number of

formal parameters in the production predecessor, and

• the condition evaluates to true if the actual parameter values are

substituted for the formal parameters in the production.
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A matching production can be applied to the module, creating a string of

modules specified by the production successor.  The actual parameter values are

substituted for the formal parameters according to their position.  For example,

production (3.1) above matches a module A(9), since the letter A in the module is the

same as in the production predecessor, there is one actual parameter in the module A

(9) and one formal parameter in the predecessor A(t), and the logical expression t>5 is

true for t=9.  The result of the application of this production is a parametric word B

(10)CD(3,7).

If a module a produces a parametric word χ as the result of a production

application in an L-system G, we write a à χ.  Given a parametric word µ =

a1a2…am, we say that the word ν = χ1χ2…χm is directly derived from (or generated

by) µ and write µ à ν  if and only if ai à χi for all i = 1,2,..,m.  A parametric word ν

is generated by G in a derivation of length n if there exists a sequence of words

µ0,µ1,…,µn such that µ0 = ω, µn = ν and µ0 à µ1 à … à µn.

An example of a parametric L-system is given below.

w  : B(2)A(4,4)
p1 : A(x,y) : y <= 3 à A(x * 2, x + y)
p2 : A(x,y) : y > 3 à B(x)A(x/y, 0)           (3.2)
p3 : B(x) : x < 1 à C
p4 : B(x) : x >=1 à B(x - 1)

As in the case of non-parametric L-systems, it is assumed that a module

replaces itself if no matching production is found in the set P.  The words obtained in

the first few derivation steps are show in Figure 3.10

Figure 3.12: The initial sequence of strings generated by
the parametric L-system specified in prototype (3.2).
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3.9 Turtle interpretation of parametric words

If one or more parameters are associated with a symbol interpreted by the

turtle, the value of the first parameter controls the turtle’s state.  If the symbols are not

followed by any parameter, default values specified outside the L-system are used as

in the non-parametric case.  The basic set of symbols affected by the introduction of

parameters is listed below.

Table 3.4 The symbol of parametric words.

Parametric words Meaning

F(a) Move forward a step of length a > 0.  The position of the turtle

changes to (x’, y’, z’), where

X’ = x + aXx

Y’ = y + aXy

Z’ = z + aXz.

A line segment is drawn between points (x, y, z) and (x’, y’, z’).

f(a) Move forward a step of length a without drawing a line.

+(a) Rotate about Z-axis by an angle of a degrees.  If a is positive,

the turtle is turned to the left and if a is negative, the turn is to

the right.

&(a) Rotate about Y-axis by angle of a degrees.  If a is positive, the

turtle is pitched down and if a is negative, the turtle is pitched

up.

/(a) Rotate about X-axis by an angle of a degrees.  If a is positive,

the turtle is rolled to the right and if a is negative, it is rolled to

the left.

It should be noted that symbols +, &, and / are used both as letters of the

alphabet V and as operators in logical and arithmetic expressions.  Their meaning

depends on the context.


