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1 Introduction

The present work is motivated by observations of spatio-temporal patterns, mainly in
chemistry, but also in biology. Most of these patterns are far from being chaotic; instead
they have a complex periodicity in space and time.

In the experiments chemical reaction fronts can be observed in situ as they propagate
across a catalytically active metal surface. Spirals, traveling waves and standing waves
are formed by the adsorbed reactants.

A mathematical model for such a reaction has to take into account as well the complex
kinetic processes and the spatial coupling.

Since catalytic reactions at low pressure are considered to be isothermal, the temperature
is a free parameter of the experiment. As well the partial pressures of the reactants can be
regulated. But the various kinetic parameters are often not identical with those accessible
by experiment. Some of them are known precisely from the literature, others are hardly
measureable and vary by orders.

In a mathematical model the parameters can be varied continuously within these ranges,
paying attention to their functional dependence on the free parameters of the experiment.

Heterogeneous Catalysis means that the reacting species and the catalyst do not have the
same phase such that the e.g. gas phase reactants first have to be adsorbed at the catalyst
surface and then react to the desired product. Depending on how strong the reactants
are bound to the surface of the catalyst, the diffusion coefficients for the various species
may differ by orders.

It is a known fact that diffusion not only smoothens the concentration gradients which
are given by the initial data or result from the reaction kinetic processes. Diffusion is also
able to induce instabilities which give rise to stable inhomogeneous steady or time-periodic
solutions.

The conditions for such a bifurcation are rather restrictive but can be checked by only
considering the kinetic part. This yields a method for finding critical parameters of the
reaction-diffusion system. Numerical simulations which are carried out in the neigh-
borhood of these critical parameters develop the same phenomena as observed in the
experiment.

1.1 Survey of the Content

This work concentrates on reaction-diffusion models which consist of two and three dif-
ferential equations modeling concentrations of the reactants and the catalytic activity of
the surface.

In order to explain spatio-temporal structures and the process of self-organization a spatial
operator such as the Laplacian describes the mobility, or surface diffusion, of a single
species. The kinetic behavior is modeled with ordinary differential equations having
polynomial nonlinearities up to third order.
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The question is how to distinguish the reaction-diffusion system from a system without
spatial coupling where the processes at each place are independent from each other. To
answer this question the kinetic parameters are chosen in a range where any temporal
periodicity can be excluded. These parameter ranges are found with standard methods
for systems of ordinary differential equations, such as bifurcation theory, singular per-
turbation, unfolding of singularities, asymptotic analysis of planar and nonautonomous
systems.

The detailed modeling of a heterogeneous surface reaction and the possibilities of simpli-
fication are given in CHAPTER 2.

The oscillations observed in the reaction rate are ascribed to a phase transition of the
catalytically active platinum surface, known as reconstruction of the surface.

Slightly different models are proposed mainly for low-index platinum surfaces.

The result of a comparison of the different models is that the crucial nonlinearity is posed
by the quadratic order of one of the elementary reaction processes. The cubic order of
another process does not play an important role.

This work proposes to model the hysteresis in the phase transition. The advantage is
a parametrical dependency controling the strength of the hysteresis, which differs a lot
between the various surfaces. With this slight change in the model, it is possible to handle
the Pt(100) case as well as the Pt(110) case within the same model. It may therefore serve
for a combined surface of polycrystalline platinum foils which are dominated by patches
of these two well defined surface structures.

The kinetic parts of these models are analyzed in CHAPTER 3 with the methods of singular
perturbation and unfolding of the singularities.

It is known from the experiment that the adsorbed concentrations of the reactants, i.e. oxy-
gen and carbon monoxide, are strictly anticorrelated. Asymptotic analysis reduces the
number of equations and yields a system of two variables, one is the adsorbed carbon
monoxide and the other is the catalytic activity of the surface. Qualitative changes of the
dynamics can be traced out with functions of the parameters. This was done in order to
control the kinetic part before turning the system into a partial differential system and
solving the initial value problem by numerical methods.

CHAPTER 4 shows the results of numerical investigations for the reaction-diffusion system
in one and two spatial dimensions. Spatio-temporally periodic structures need both a
nonlinear phenomenon that accounts for sustained oscillations and a mechanism that
synchronizes the oscillators which are thought of as being spread at random all over the
domain. The spatio-temporal attractors are obtained for a system which stems from the
previous model and is mainly a single reaction-diffusion equation coupled with an ordinary
differential equation.

The initial value problem of the reaction-diffusion system is solved for Neumann boundary
values on one- and two-dimensional grids with numerical methods for straightforward but
time-implicit integration. Particularly for two-dimensional computations the data leads
to animation sequences of spatio-temporal patterns which are in good agreement with
the observed phenomena in diverse experiments. In these numerical experiments several
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initial values are tested; they vary from simple cross gradient profiles to randomly chosen
values about the critical constant solutions. In either case the self-organization leads to
qualitatively similar solutions.

Although this setting of the problem already reveals a great variety of spatio-temporal
solutions, it is not possible to bifurcate such an attractor from an asymptotically stable
constant equilibrium.

CHAPTER 5 investigates whether it is possible to use a single diffusion coefficient as
bifurcation parameter for a space-dependent supercritical Hopf bifurcation, the so called
wave bifurcation.

This diffusion-induced bifurcation to spatio-temporal solutions which are periodic in space
and time can be decided by a change in sign of the highest but one Hurwitz determinant. A
third differential equation is required. The kinetic part of the three equations has to fulfill
a number of conditions in order to destabilize the constant equilibrium by introducing a
diffusion term with a large diffusion coefficient in a single equation. This is formulated in
detail in THEOREM 5.5 for a system of a single reaction-diffusion equation coupled with
two ordinary differential equations.

In the commonly known Turing bifurcation the constant solution is destabilized to a
steady but nonconstant one. The rule in the case of activator-inhibitor systems, i.e. the
inhibitor has to diffuse faster, has an analogon in the case of the wave bifurcation. For
a bifurcating spatio-temporally periodic solution it is necessary (but not sufficient) that
the purely kinetic subsystem, i.e. the part of the system that does not contain a diffusion
operator, is stabilizing. Thereby the bifurcation to either a steady nonconstant solution
or a standing wave exclude each other (see REMARK 5.5).

For systems of any size the number of conditions which have to be fulfilled for a wave
bifurcation increases in a way that a formulation of conditions is not convenient anymore.
The restriction on a single reaction-diffusion equation coupled with at least two ordinary
differential equations gives exactly six conditions which solely concern the kinetic part.

The conditions on the kinetic system imposed in CHAPTER 5 can be used to construct
dynamical systems of a form that will exhibit a certain observed behavior like standing
waves. Examples for the wave bifurcation are given in CHAPTER 6 where heterogeneous
autocatalytic models are constructed.

The surface reconstruction mechanism which is described in detail in CHAPTER 2 has an
autocatalytic effect on the adsorption process, and it is possible to build a model which
bifurcates in a constant solution to a standing wave solution. The diffusion coefficient
serves as bifurcation parameter.

Furthermore the suggested models can be tested for their capability of revealing such solu-
tions. This was successful for an autocatalytic model recently suggested by ZHABOTINSKY
et al. [46]. The nonlinear coupling is ascribed to the autocatalytic effect of a reactant and
is responsible for boundedness of the solution.

The periodic attractors were first known from biological applications. In chemistry they
were introduced much later by Belousov and Zhabotinsky. Therefore it is quite natural
to look for biological systems exhibiting a similar behavior. This is done in CHAPTER 7
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where the developed method of CHAPTER 5 is applied to a model for microbial growth.
It shows that this modified Monod model reveals sustained oscillations in the presence
of mobility for cells with a low-consuming metabolism. These periodic solutions can be
excluded for each parameter constellation of the spatially not coupled chemostat system.

To improve the text in readability, the theorems which are only citations are put into
APPENDIX A. Related systems to the topic are listed in APPENDIX B, and a summary
of notations can be found in APPENDIX C.

1.2 Computational Tools

To perform the algebraic transformations of the semi-phenomenological models intro-
duced by the experimentalists the computer algebra program Maple V is used. By these
transformations the simpler models are related directly to the free parameters of the
experiments, e.g. partial pressures of reactants and temperature.

The computer algebra program is also used to solve the stationary problem, since in
contrast to iterative methods, for instance a Newton method, it uses Grobner bases for
the description of the solution manifold and is able to find multiple zeros. For small
systems which have a lot of parameters it is the appropriate method of finding all existing
equilibria simultaneously with their dependency on the specific parameters.

For the initial value problem, the discretized system of ordinary differential equations
is solved with the LSODE package (see HINDMARSH [23]), using numerical estimates of
the Jacobian matrix. This program offers an implicit method for time discretization,
originally developed for stiff problems of ordinary differential equations. As maximal step
size a time step of t=0.01 is used. The error tolerances are 1 x 10~% relative and 1x 10712
absolute. The spatial discretization then is adjusted according to the relative size of the
spatial parameters.

For spatio-temporal solutions the reacting fronts propagate across the whole domain and
there is no need for adaptive grid refinement. Using an equidistant cartesian grid suits
the problem and no further efforts are made to improve the simple discretization scheme.

The graphics are realized with the program cnom?2.0 especially developed for animation
sequences of systems of differential equations (see KROMKER [32]). Although nowadays
there exists a variety of such programs for various hardware platforms this was not so at
the time this investigation started.



2 Catalytic Reactions on Metal Surfaces

2.1 Heterogeneous Catalytic Reactions

The prototype of kinetic oscillations in chemistry is the Belousov-Zhapotinsky reaction,
resulting in the widely studied Field-Noyes equations (see EXAMPLE B.3). Since it is a
homogeneous catalytic reaction taking place in the liquid phase, it can be modeled under
stirring conditions. This is not possible in the case of heterogeneous catalysis, the form
of catalysis in which the catalyst and the reaction mixture have different phases. Since
most catalytic reactions are heterogeneous as, for example, fluid and gas phase reactions
on metal surfaces, they are of great importance.

The kinetic process of heterogeneous catalysis comprises the adsorption of the reactants,
the reaction and desorption. Apart from the reactants, the amount of free adsorption sites
on the surface and the phase transitions have to be modeled. In many cases an oscillatory
behavior of the concentrations (coverages) on the surface is observed. What emerges
are interesting spatio-temporal patterns such as traveling reaction fronts, standing waves,
target patterns, spiral waves or turbulent patterns.

To improve the understanding of the effects of transport towards the surface, the dy-
namics of the reaction process at the surface, and the desorption of the product, basic
studies of small reaction systems are necessary. One of the best understood mechanisms
is the oxidation of carbon monoxide on platinum, which is last not least due to the
fundamental investigations of Ertl and his group at the Fritz-Haber Institut der Max-
Planck-Gesellschaft, Berlin.

In this chapter the present models are introduced and first attempts are made to improve
the setting. The catalytically active surface with the adsorbed coverages of reacting
species has to be understood as a reaction-diffusion system of at least two or three equa-
tions. The difficulty lies in understanding the effect of parameters responsible for a change
of the dynamical behavior. A more detailed analysis is carried out in CHAPTER 3.
These equations may serve as boundary conditions for a future model which takes into
account a more detailed interaction of the gas phase with the surfaces species.

2.2 Oxidation of Carbon Monoxide on Platinum

The catalytic oxidation of CO on a platinum single crystal surface may serve as an example
for a catalytic surface reaction. It is well established that this reaction proceeds via a
Langmuir-Hinshelwood mechanism where * denotes a free adsorption site and has different
meaning for the two adsorbates.
CO + x = COy
O2 + x — 20,4
Oaga + COq — COp + 2%
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On palladium surfaces, this reaction also takes place, and it shows oscillatory character
as well, but for different regimes of partial pressure and, as shown experimentally, with
different mechanisms. Whereas the Pt surfaces reconstruct their topmost atomic layer, Pd
does not show a reconstruction but tends to build oxids and incorporates atomic oxygen
in deeper atomic layers.

2.2.1 Experimental Tools

The work function A¢ of a metal is defined as the energy difference between the Fermi
level and the vacuum level. It is changed upon adsorption by the nonzero dipole moment
of each adsorbate complex. Adsorbed oxygen has a much higher dipole moment than
adsorbed CO and the changes in work function mainly reflect changes in the oxygen
coverage. Since up to now spatio-temporal oscillations have only been observed at low
pressure, this ensures strictly isothermal conditions. The experiment takes place in a
gradient-free flow reactor. That means that the partial pressure of each reactant is kept
constant, including counterregulation of oscillations in the partial pressure of CO of about
1%. Regions of oscillation are found by fixing the temperature and the partial pressure
for oxygen and then gradually increasing the partial pressure for CO. The work function
A¢ is proportional to the oxygen coverage. It parallels the reaction rate since adsorption
of oxygen is rate limiting. A sharp decrease of the work function indicates the transition
from an oxygen-covered to a CO-covered surface. In this parameter range spontaneous
oscillations can be observed.

Spatially resolving experimental tools used on or especially developed for heterogeneous
catalytic processes are briefly listed here.

LEED (Low Energy Electron Diffraction) was first used to reveal the lattice of the surface.
In a scanning LEED technique the beam typically has a diameter of ~0.5mm and scans
the sample so that the traveling reaction fronts are resolved.

The PEEM (Photo Electron Emission Microscopy, developed by ENGEL et al. [12]) is a
more direct and spatially better resolving tool. It uses the dipole moment of the adsorbed
species, has a spatial resolution of ~0.2um and a temporal resolution of 20ms. Adsorbed
oxygen appears dark in these pictures, CO is lighter grey and the free surface nearly white.
Subsurface oxygen appears extremely light due to the fact that it reverses the dipole of
the above layer. The whole sample has a typical size of 0.5cm? rectangular surface area
and a thickness of about one millimeter. A visual field of 600pum can be viewed in situ
and recorded on a video tape in order to digitize the data with a frame grabber for further
analysis. Examples of PEEM images are shown in FIGURES 2.1, 2.2 and 2.10 to 2.12.

Both LEED and PEEM techniques can only be used in a UHV-chamber restricting the
experiment to regimes of partial pressure less than 10 “mbar.

Via the work function measurement the overall reaction rate oscillations can be detected
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FIG. 2.1: Left: Standing-wave-type patterns on a 0.3 x 0.3mm? surface area accompanying rapid harmonic
temporal oscillations with a period duration of 7=1.4s. T =550K, p., =1.75 x 10~"*mbar and
Do, =4.1x10"*mbar, t=0, 0.08, 0.12, and 0.46s (after [26]). Right: Standing-wave patterns on

a 0.2x0.3mm? surface area associated with regular temporal oscillations with a period duration
of 7=2.8s. T=>544K, p,, =1.2x10"*mbar and Po, =3.1X 10~*mbar, t=0, 0.6, 0.8, 1.4, 2.0,

and 2.2s (after [26]).

for even higher pressures. At the moment new experimental tools ! are being developed
to close the so-called pressure gap between UHV and atmospheric conditions.

2.3 Modeling the Kinetic Process at the Surface

Throughout this work and according to all citations on the matter, u stands for adsorbed
CO,q concentration and v stands for adsorbed oxygen.

Adsorption of CO is assumed to depend linearly on the partial pressure of carbon monox-
ide p.,. It is only weakly affected by the presence of adsorbed oxygen. Its coefficient is
modeled with a function f,,(CO) depending on the adsorption rate known from kinetic gas
theory, the sticking coefficient, that is the probability of CO to get adsorbed at the place
where it first hits the surface, and a precursor effect modeling the effectively available
surface sites for adsorption.

The coefficients for the desorption k4 and the recombination k, are temperature dependent
and can be modeled with Arrhenius kinetic k; = ke Fa:/RT.

= f,(CO)pyo — kau — kruv

O, adsorption is a dissociative chemisorption process and needs a fairly large ensemble
of neighboring unoccupied surface atoms, which means that adsorbed CO acts as an
inhibitor for this process. On the other hand the oxygen coverage does not inhibit CO
adsorption, and this phenomenon is called asymmetric inhibition of adsorption.

LEMSI (Ellipso-Microscopy for Surface Imaging) for example is pressure independent and is used in
combination with RAM since both techniques work with different angles of observation so that the effects
of these angles can be computed and kept out of the result [43].



8 CHAPTER 2. CATALYTIC REACTIONS ON METAL SURFACES

F1G. 2.2: Sequence of target patterns on a 0.2x0.3mm? section of the Pt(110) surface at T =427K,
Poo =3x 10" mbar and p, =3.2x10"*mbar. The time interval between the first five images
is 4.1s; the time interval between the last two images is 30s (after [26]).

The quadratic dependency of oxygen adsorption on the amount of free surface sites is
due to the fact that the elementary reaction with the surface is of second order. So the
adsorption coeflicient is a function f ,(O) of the adsorption rate, the sticking probability
and a quadratic term modeling the amount of available surface sites. The latter is the
main difference to the adsorption process of carbon monoxide.

Desorption of O may be neglected since its coefficient for the requested temperature is
orders smaller than the other parameters.

v = fad(O)p02 — k,uv

When modeling the system with two equations for each reactant species, only bistability
but no oscillations occur. This can be explained by the strict anticorrelation of both
quantities as is done in [7] (see also the survey by ERTL [14]).

The reconstruction model for low pressure on platinum foils serves as an explanation
for the observed oscillations. Recently subsurface oxygen was suggested as a source for
oscillatory behavior in the case of palladium and platinum at higher pressures, too.

2.3.1 Reconstruction of the Surface

A reconstruction of the topmost layer of metal atoms has been found to be responsible
for the dynamic process on platinum at low pressure. Variations in the overall reaction
rate are due to periodic structural changes in the surface which modify the catalytic
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F1G. 2.3: Existence diagram for the occurence of kinetic oscillations on Pt(100) and Pt(110) at a fixed
temperature of 7'=480K. The narrow existence region for oscillations on Pt(110) is represented
by a single line (after [13]).

activity. This can be explained as follows: The crystal structure of platinum is a cubic
face centered lattice in the bulk. If a single crystal is cut in a way to yield a Pt(111)
surface, the Miller indices indicate that the bulk-like lattice is represented at the surface
by a quasi-hexagonal structure. This surface is already at its minimum free energy. No
reconstruction takes place in this case.

unreconstructed
1x1 Pt(100), Pt(110)

reconstructed nonreconstructing
hex Pt(100), Pt(110) Pt(111)

F1G. 2.4: Schematic 1x1 and hexagonal surface structure for low-index planes of Pt. In the absence of
adsorbates, the hex structure has minimal free surface energy. Pt(111) does not reconstruct,
since it already has a hexagonal surface.

In contrast to this situation, Pt(100) and Pt(110) undergo a reconstruction. Their bulk-
like termination results in a 1x1 structure which is not stable and reconstructs to a
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quasi-hexagonal structure (simply denoted as “hex”). This is because of the absence
of any outer forces from one side of the surface. Apparently the reconstructed surface
represents a state of minimum free energy lower than the bulk-like 1x1 surface. In
FIGURE 2.4 the two phases are assigned to the low-index Pt surfaces.

The reconstruction is lifted in the presence of an adequate adsorbate. The adsorption
energy is added to the surface free energy, causing a switching of the stability of the two
phases, since the adsorption energy on the unreconstructed phase is substantially higher
than on the hex phase.

In the Pt(100) case, CO can be adsorbed on either surface structure, but oxygen adsorp-
tion is almost impossible on the reconstructed phase. On Pt(110) this is not as drastic,
but in either case the CO coverage can be regarded as a pace-maker for the reaction. At
first glance this contrasts with the observation that adsorbed CO forms dense adlayers
and thereby inhibits the adsorption of oxygen. Large CO coverage will always be asso-
ciated with a low reaction rate. But this putative contradiction can be explained with
the bistability of the system: There is another branch of stable solutions for small CO
coverage with a high reaction rate. Oscillations are detected inbetween these branches.

The dependency on the phase transition is mostly apparent in the sticking coefficient for
oxygen. It differs for the two phases and is substantially higher on the part of the surface
where the reconstruction is lifted.

The adsorbed CO molecules have a measurable mobility. This accounts for a more compli-
cated than a linear dependency on the free surface sites in the adsorption term of carbon
monoxide, known as precursor effect. The surface diffusion occurs again as a separate
term, and in this strictly isothermal model it is responsible for spatial self-organization.
In contrast oxygen has a higher activation energy for the adsorption process. Hence, it is
strongly bound to the place on the surface where it first hits. Surface diffusion for oxygen
can be neglected for the temperatures in consideration.

The reaction of CO,q and atomic O,q is comparably fast and carbon dioxide immediately
leaves the surface. If the adsorbate coverage falls below a certain threshold, the metal
surface again reconstructs to the hex phase.

The reconstruction mechanism is also relevant for polycrystalline platinum as used in
technical applications. The polycrystalline surface is composed of patches of low-index
planes of Pt on a thin platinum foil or on some inert substrate. Contrary to a former
opinion, Pt(111) patches only occupy about ~10% of the surface area, while the rest is
occupied by ~50% of Pt(110) and ~40% of Pt(100).

FIGURE 2.3 shows the oscillatory regions in a diagram of p_, versus temperature for both
Pt(100) and Pt(110). Oscillations on Pt(100) are very irregular, showing up in a smeared
range of 107° to 10 *mbar and 400 — 550K at a fixed partial pressure for oxygen (always
about an order of magnitude higher) with periods of one to several minutes. In contrast
the oscillatory region of Pt(110) is a sharp line and oscillations are very regular. Periods
range from about one second to one hour. Fast oscillations with a medium amplitude
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occur for T'>530K, slow oscillations with a period >1min and large amplitudes occur
for T'<490K. These large oscillations are often superimposed by fast small amplitude
ones. The experimental observations with PEEM also reveal a much greater variety of
spatio-temporal patterns in the Pt(110) case (see the diagrams and figures in [40]).

F1G. 2.5: Ball model of unreconstructed Pt(110) FiG. 2.6: Pt(110) reconstructs to a 1x2-surface

surface. The square on top indicates the which has a missing row structure. Its
1x1 structure. It looks similar to the quasi-hexagonal surface is found at the
Pt(100) unreconstructed surface but has flanks of the rows in the [110] direction
bigger spaces between the atomic centers. as marked with the hexagon.

The sticking coefficient for oxygen on Pt(100) is substantially higher on the 1x1 phase,
where it is about 0.1, than on the hex phase, where it is about 107*—1073. Adsorption
of oxygen on the hex phase - and therefore the equation for a O,q species on this phase
- is neglectable.

This is not true for Pt(110), where the sticking coefficient is about 0.6 on the 1 x 1 phase,
and about 0.3—0.4 on the 1x2 or so-called missing row phase (see FIGURE 2.6).

It should be mentioned that experimental conditions are favorable for faceting, a process
which is possible on Pt(110) surfaces and is initiated by the periodic structural transfor-
mation (see [40]). The effect of faceting is that it facilitates the donation of metal electrons
into the antibinding 27*-orbital of the Oy molecule, causing a shift to a higher reaction
rate, that is, a higher catalytic activity of the surface. In KRISCHER et al. [30] mixed
mode oscillations are explained with faceting, but the qualitative aspect of oscillatory
behavior itself is not linked with this phenomenon. Therefore it will not be taken into
account here.

2.3.1.1 The Pt(100) Model

The first mathematical model describing the process on Pt(100) was published by IMBIHL
et al. [24] in 1985 and is given here in a way slightly corrected by the author [25]. The
indices a and b indicate the 1x1 and hex phase of the surface respectively, dealing with
different species whether the reactants are bound on one or the other fraction of the
surface. A higher desorption coefficient on the hex phase accounts for the weaker bonds
of CO,q on this phase. A parameter k3 introduces the trapping, that is an increase of u,
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which is proportional to the amount of u; and the fraction of 1x1 phase a, and is due
to the higher adsorption energy on this phase.

There is no equation for v, in the model, reflecting a sticking probability of almost zero
for oxygen on the hex phase. Therefore reaction takes place with only the reactant bound
on a, the fraction of the surface area present as 1 x 1 phase (the fraction of hex phase then
being b=1—a). The switching of phases is modeled as a piecewise linear function which
can be seen easily when replacing the condition ¢<1 by ¢ :=ua/Unin+va/Viuin < @;
then the term —kga(1—c) simplifies to —kg(a—c') and this term is negative for a positive
parameter kg.

U =  kiPoo@ — kot + kzaup — kaugv,/a
U = kipgo(l —a) — keup — kzauy
ba = keap,, {[1 - 2us/a - 50va/3a)” + v [1 — 5va/3a]2} — kqugv,/a
( o for u, > 0 and Ya 5 1
Umax ¢ aUmaX
@ = 4 Ug Va
—kga(l — f = < 1
8a( C) o ¢ aUmin + anin
\ 0 otherwise

The same paper reports on the measured and calculated hysteresis in the adsorption of
CO in a heating/cooling cycle monitoring the hysteresis of hex reconstruction, too. The
latter can be ascribed to the existence of nucleation barriers in the formation of the new
phase.

Discussion

The term ~[1—5v,/3a]” takes into account the existence of defects in the CO adlayer
which are needed so that oxygen adsorption is not blocked. Without this term no oscilla-
tions were obtained in the simulations. The prefactor v, however, cannot be determined
experimentally and is only fitted in to gain the experimentally observed results with the
above model.

Division by a yields abnormal singularities especially when introducing a surface diffusion
term for CO in the first equation; in [24] this term has the form ksAu,/a.

In computer simulations the waves always have to be triggered from that side of the
spatial domain which is given the higher values for sticking coefficients and defects. This
is another reason to scrap this rather complicated model or at least simplify it to a model
which also reproduces the qualitative features.
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Explanation Parameter Value at 480 K

CO Adsorption kq 2.205x 10° MLs 'mbar !
CO Desorption; 1 ks 9%x10 3s7!

CO Trapping ks 1.5s7¢

Reaction k4 103 —10° MLs™!

CO Diffusion; «1 ks 1075—1073 cm?s!

CO Desorptionpes ke 117!

O, Adsorption; k; 3.75x10° MLs 'mbar—!
Phase transition ks 0.4—2.0s71

Crit. CO,q coverage Unmin 0.32

Crit. O,q coverage Vnin 04

Growing condition Umax 0.5+0.1

Tab. 2.1: Kinetic parameters for the Pt(100) model as reported in [24]. ML stands for monolayer since
the adsorbate concentration is thought of as a single layer of molecules.

A Simplification of the Model

Here is a first heuristic simplification of the model:

U p(1 —u—v)— Nuv
v = oa(l—u—v)?— Nuw

. K(l—a) if ¢>1
@ = —k'a if c<1

The adsorption of carbon monoxide depends linearly on the amount of free surface sites
(1—u—v) whereas oxygen adsorption takes place only on the unreconstructed phase and
its main feature is the quadratic dependency on the amount of free surface sites.

The catalytic activity depends on a critical coverage ¢= (u+wv)/0.4. Above c the activity
is growing, below it is shrinking. Assuming a correlation to the fraction of 1x1 phase
a, this quantity is modeled as a linear differential equation which switches at ¢ from a
positive to a negative coefficient of the linear term in a. The phase transition is almost
decoupled from the quantities u and v.

As far as the locations of fixed points are concerned, this sketch has a reflection symmetry
at a plane where u equals v, but the flow itself has no such symmetry. This can be seen
easily when computing the linear stability behavior of these fixed points.

The experimentally observed asymmetric inhibition in the adsorption processes, namely
that preadsorbed CO blocks oxygen adsorption but not vice versa, is an outcome of the
dynamical behavior of the model. It has a locally stable CO-covered state, whereas the
oxygen-covered state is unstable, comparable to the observations in experiments. There
is another almost oxygen-covered state that also appears locally stable, but it does not
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block the reaction since the CO coverage does not vanish completely. Hence, it is not a
physically implausible “adsorbing state”.

An improvement of this model is achieved by changing the switch from a piecewise lin-
ear but discontinuous function to a continuous one. The discontinuity of height &' is
smoothened with a monotone function depending on u and v in an e-neighborhood of
c=1. There are at most four (symmetric) fixed points located in this neighborhood which
are now accessible to bifurcation theory.

A detailed bifurcation analysis is done in KROMKER [31]. For a brief discussion of this
model see also SECTION 3.1.

2.3.1.2 The Pt(110) Model

The model developed by KRISCHER [29], too, is an ordinary differential system that is
derived from a system for reactant coverages showing bistability.

o = kypoosu(l — (u/us)?) — kqu — kyuv = fi(u,v)
0 = koo, (50w + su, (1= w))(1 = (u/us) = (v/v:))" = kywv = fo(u,v)

The adsorption of CO is modeled as a product of the adsorption rate k,, the partial
pressure of CO (a free parameter in the experiment), the sticking probability s,, and
the total amount of available surface sites. The latter is modeled with a precursor effect,
described after GASSER and SMITH [18], where u, is the saturation coverage. The mobility
parameter g in the precursor kinetic is reported to be ¢g=340.5. Most authors agree in
a sticking probability and a saturation coverage equal to unity (measured in monolayers
ML). The coefficients for desorption and reaction are modeled with Arrhenius kinetic (see
TABLE 2.2).

A first step towards understanding local behavior of dynamical systems can be made by
analyzing the shape of null clines. A null cline is the zero set of a single equation. In
planar systems, these null clines are simply curves, and the intersections of the curves for
both equations are the fixed points of the system.

Multiple solutions as in the case of bistability typically arise from an s-shaped null cline.
However, the cubic term in the adsorption of CO is not responsible for this shape of
the null cline fi(u,v)=0. Rather it stems from the quadratic term in the adsorption of
oxygen which enters the first equation through the reaction part. In detail this adsorption
term is ksvsv(l—u/us—v/vs)2 where k, is the adsorption rate and v, is the saturation
coverage for oxygen. As long as w is kept constant, s, :=/(Sy,w+ sy,(1—w)) is just a
sticking coefficient for oxygen.

The stable equilibria, representing branches of high and low reaction rate, undergo saddle-
node bifurcations, and this is the only type of bifurcation occuring in this planar system.
Neither the unstable saddle(s) nor the stable nodes can get oscillatory. No stable limit
cycle can occur (with an argument used in SECTION 7.1.2) because for each time periodic
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solution ¢(t):= (u(t),v(t)) with ©(0) =¢(T') the integrated divergence fOTaufl(u,v)—i—
Oy f2(u,v) dt is always negative. That means that each limit cycle has to be stable, which
is not possible in this planar system because of the Poincaré-Bendixson theory.

The system becomes oscillatory with an additional equation for the reconstruction w.

W = ku(f(u) —w)

The switch in this equation is modeled with a function f that is nondecreasing and
differentiable. It is zero for v <0.2 and one for v >0.5. As recently reported in [15], the
preexponential factor k9 in the Arrhenius equation for k, may be greater by an order
than in TABLE 2.2.

Explanation Parameter Value Energy E, Value at 540 K
CO adsorption

hitting rate k, 3.135x10° s !mbar~!

sticking coefficient Su 1

saturation coverage Usg 1

mobility parameter q 3.5+0.5
CO desorption kS 2x10% st 159098 J/mol 8.157 s 1
Reaction k? 3x 10657t 41868 J/mol 267.454 571
O, adsorption

hitting rate k, 5.858 x10% s~'mbar~!

sticking coefficient; .o Sy, 0.4

sticking coefficienty,; sy, 0.6

saturation coverage Vs 0.8
Phase transition kS 10%s ! 29308 J/mol 0.146 s *

Tab. 2.2: Kinetic parameters as reported in [30]; Arrhenius kinetic yields k; = ke~ Fai/RT.

This model of KRISCHER et al. [30] is also used by FLACKE et al. [15] and BAR et al. [5] who
turn the system into a reaction-diffusion system by adding a Fick-type surface diffusion
for the CO equation. Spirals can be detected numerically in a range of parameters which
is in quite good agreement with the experiments [40].

In the work on traveling waves of FLACKE et al. [15], the typical shapes of null clines of
this system are shown.

With a more or less heuristic argument the oxygen equation is turned from a differential
equation to an algebraic equation by simply setting the temporal derivative to zero. It
can now be solved for the oxygen coverage and incorporated into the first equation.
This so called adiabatic elimination (without change in entropy) yields a system of two
equations.
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F1G. 2.7: Typical null clines for the u-equation shown as implicit functions n;(u) =w. The solid line in
both pictures corresponds to p., =4 x 107° mbar and p, = 1.4 x 10~* mbar, respectively. The
temperature is fixed at 538K. On the left solely the partial pressure of oxygen is decreased in
three steps from the solid line to the lighter lines, and on the right solely the partial pressure of
CO is decreased, fixing the oxygen pressure.

A more formal analysis argues with a variable transformation and then an expansion in
terms of powers of a small parameter. This leads to a comparable system of two equations
but with the possibility to estimate and explain the regions of validity of the model (see
CHAPTER 3).

The precursor kinetic needs a closer look, since it is a nonlinear effect that might cause a
global behavior of the flow not evident in the local analysis. The mobility of adsorbed CO
is responsible for a deviation of the linear dependency of adsorption on the amount of free
surface sites. Any exponent ¢>1 substantially increases the term of effective free sites
for small coverages, so that the dependency of adsorption on the preadsorbed species
is the lower the smaller the coverages are. However, the exponent can be set at g=1
without qualitatively changing the results on adsorption of mixed gases, as is reported in
KRISCHER et al. [30].

With the equation for oxygen already eliminated adiabatically, the solution curve for
fi(u,v(u,w),w)=0 is plotted in FIGURE 2.7. Further algebraic investigations show that
the shape of the curve is not essentially influenced by the exponent ¢. As a function of w
it is a fraction of polynomials, and the numerator as well as the denominator polynomial
are of degree n:=max{4,2q}. Increasing ¢ mainly affects the general shape for u>1, and
since u is a concentration, this is physically not relevant (see FIGURE 2.8 on the facing

page).
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&

FIG. 2.8: From left to right are shown null clines of the u-equation on w € (0,1); the mobility parameter
changes from ¢=1 to ¢g=2 to ¢g=3. The partial pressure of CO is decreased in three steps from
the solid line to the lighter lines. The temperature is fixed at 500K. The sticking coefficient
rather resembles the Pt(100) case, therefore the partial pressure for CO is almost halvened in
comparison with FIGURE 2.7.

Only a rough sketch of this s-shaped null cline of the u-equation survives in the following
model:

o = —ko(u—up)(u— uz(w))(u—us) + DAu
W = ky(f(u) —w)

with u; and us being constants, and us(w) a linear function. After appropriate scaling
it remains a system of the form:

4 = —%u(u—l)(u—w:b)—i-Au
w = f(u)—w

The shape of the null clines reminds of a Fitz-Hugh—-Nagumo system (see EXAMPLE B.2).

Discussion

The switch can be improved to an analytic function as is done in [41]. But the zero set of
the w-equation always remains a function of u as long as f is a function of u. Multiple
solutions for w at a fixed value of u (which introduces hysteresis in the phase transition)
are not possible with this model.

2.3.2 Hysteresis in the Phase Transition

The phase transition is the crucial feature of the process, and its dynamical modeling is
more or less heuristic. In the KRISCHER model the cubic nonlinearity in the equation
for the reconstruction process is only used to yield a C!-function for the switch and is
later improved to an analytic function in [41]. These models all have in common that the
null cline is a monotone increasing function of u. The reconstruction process, however,
involves half of the metal atoms of the topmost layer (in the case of Pt(110) it can also
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involve deeper layers). An s-shaped null cline is ascribed to the existence of nucleation
barriers. The so-modeled phase transition not only causes reaction rate changes but also
oscillations of coverages. The coverages themselves can be modeled as simple as possible
and still all other basic observations such as a poisoned state of a CO-covered surface
and the quadratic dependency of oxygen adsorption on free surface sites are reproduced
in the following model.

@ = 1—u—oa(l—u)
a = H(u_h(aaﬁ))

Here the greek letters are parameters that can be assigned a physical meaning, so that
for example o is a function of oxygen adsorption rate normalized by the rate of CO
adsorption. The function h(a,3) is a cubic polynomial, and its graph is fitted in a unit
square (see FIGURE 2.9) such that for all values of 8 its turning point is at (0.5,0.5),
passing through (0.0,0.0) and (1.0,1.0). The parameter 8 is a measure to control the
humps.
Take for example

h(a,B) = Ba® — ?az + (1 + §>a

to satisfy the above requirements.
Analysis of this model for a wide range of positive parameters is done in SECTION 3.2.

a a

u u

Fi1G. 2.9: The hysteretic behavior of the phase transition is modeled so that its null cline is a cubic
polynomial h:=h(a,3) shown as solid s-shaped line. It depends on a with a control parameter
B for the humps. Left: §<4. Right: §>4. The dash-dotted lines resemble the null clines of
the u-equation.

2.3.3 Comparison of the Models

The models for CO oxidation on single crystal Pt(100) and Pt(110) surfaces differ in the
process of adsorption caused by the different reconstruction processes. Therefore it is
sensible to pay a closer look to the equation for the fraction of unreconstructed surface.
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According to the expected nucleation barriers in first order phase transitions, an s-shaped
null cline should be used to model the equation for the reconstruction process. It is
convenient to form this differential equation out of a cubic polynomial depending solely
on the fraction of 1x1 phase. If then for the sake of simplicity it depends linearly on the
adsorbate(s), the null cline traces the shape of the cubic polynomial.

Aiming at a better understanding of the overall process not just on a single crystal but
also on polycrystalline material, the simplified models should not differ much in the shape
(or number) of equations. Rather they should contain only a parametric dependency for
the different reconstruction mechanisms which is able to explain the observed features.

In the present work a parameter S monotonically controls the extreme points of the cubic
polynomial h. Thereby the model ranges from no hysteresis for small 3, which might be
appropriate for Pt(100), up to strong hysteresis in the case of Pt(110), and it is usable
for any combined material.

2.4 Spatial Self-Organization

F1G. 2.10: Sequence of PEEM images at p., =5.6 x 10~"°mbar, Po, =4.0x 10~*mbar, and T=483K after
a periodic forcing of the catalyst temperature; the section is 173x 173um? (after [6]).

In heterogeneous catalysis the spatial self-organization needs a closer look since it cannot
be achieved by stirring as in the homogeneous case. Many of the experimental methods
only measure mean values since they are not capable of resolving spatial structures. Nev-
ertheless these mean values oscillate. Self-organization of a process with initial conditions
randomly distributed over the surface area has to be proposed to explain such effective
correlations.

Possible mechanisms for the coupling of the various oscillators are thermal coupling,
mass transfer, and concentration changes in the gas phase. Thermal coupling will not be
considered here, since it occurs mainly at high pressure where local temperature gradients
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7

F1G. 2.11: Coexistence of two spirals with different rotation period and wavelength a 448K, p_, =4.3x
10~ ®mbar and p, =4x10"*mbar. The long-wavelength spiral rotates with a period of 7'=25.3
s around an elliptical core of ~17x9um. The short-wavelength spiral rotates with a period of
T'=12.8s around an elliptical core of ~8x 5um (after [40]).

of more than 150 K have been observed. Temperature then enters into the coefficients for
desorption and reaction and the heat equation has to be solved, too.

At low pressure, ensuring isothermal conditions, mass transfer and gas phase coupling are
more appropriate.

Mass transfer means a surface diffusion of the adsorbates. Since oxygen is strongly bound
to the surface, its diffusion can be neglected. In contrast CO has a certain mobility that
is higher in the direction of the missing row than perpendicular to it. Target patterns
and spirals therefore appear elongated in the (110) direction (see FIGURE 2.6).

Since the anisotropy is assumed not to be coverage dependent, it can be scaled out with
appropriate space coordinates

2 2
DAy = Dlﬂ + Dzﬂ

0x? Oy?
setting £=+/x/D; and §=+/y/Ds.

For gas phase coupling at very low pressure LEVINE and ZOU [34] use the assumption
that the partial pressures in the gas phase are proportional to the average coverages on
the surface. This assumption uses the fact of instantaneous equilibration in the gas phase:
The gas pressure at any fixed point in space reacts to the change in total concentration,
since in the gas horizontal gradients disappear on a much faster time scale. Now the
partial pressures are modified to become

Peo(1+ 't — ab) and  p, (1+pa— B'0)

with positive parameters o, o' and 3, 8’ and

1 1
ﬂEE/udx, ﬁzz/vdx
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F1G. 2.12: Temporal evolution of a population of spirals with strongly differing rotation periods and wave-
lengths at T =448K, p., =4.3x 10~ mbar and p, =4x10~*mbar. The core size of the central
spiral with large wavelength is ~25x 14um. The spiral annihilating the latter rotates around a
core of about 5x3um (after [40]).

where L is the measure of the (one-dimensional) space domain. In this context the
asymmetric inhibition of the adsorption process is modeled by a slight enhancement of
the partial pressure through a greater CO coverage and a reduction of the effective partial
pressures by a greater oxygen coverage. Recall that asymmetric inhibition means that
a dense adlayer of CO blocks the adsorption of oxygen. Thereby it locally increases the
partial pressure particularly of oxygen. In contrast a great oxygen coverage still allows for
the adsorption of CO molecules. The locally effective partial pressure of CO is thereby
decreased.

For convenience LEVINE and ZOU [34] only investigated the case of nonzero o=/ and
of the other parameters equal to zero. That causes a self-induced parametric resonance
due to the fact that both coverages are anticorrelated. As a result of their analysis of
the amplitude equations this resonance broadened the region for the modulated standing
waves (constant oscillations superimposed by nonconstant standing waves). Nevertheless,
the qualitative behavior does not change when introducing such a coupling.

At higher pressure more complicated models for pressure and velocities have to be ap-
plied. First computational results for catalytic methan conversion have been achieved in
the group of Warnatz. They investigate hysteresis in ignition-extinction processes with
detailed chemical reaction mechanisms incorporated in the Navier-Stokes equations. The
simulations are compared to experiments with a counter flow reactor (see [8]). So far
the surface is a single point boundary condition that does not oscillate. A combination
of temporally oscillating boundary conditions in one or two dimensions with gas phase
dynamics still has to be done. Possibly the pressure gap can be closed by simulations
parallel to closing it in experiments.
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3 Treating Nonlinear Kinetics

3.1 Kinetic Equations without Hysteresis

The model of this section is described in IMBIHL et al. [24], where a local analysis is done,
too, for the obvious fixed points of the equation. Here a more complete local and also
global analysis is carried out.

In a first approximation a Hamiltonian system can be detected for a certain parameter
constellation. The unfolding of a Takens-Bogdanov point, which is of course a local
argument, reveals the global behavior of the flow for a wide range of parameters.

The concentration of adsorbed CO on the surface is described by w, the concentration of
adsorbed oxygen is described by v, and a means an averaged amount of 1x1 structure
supporting the reaction in so far as oxygen can only be adsorbed on this part of the surface
since the Oy molecules have to be dissociated. This resembles more or less the Pt(100)
case.

The adsorption coefficient of CO is called p, the reaction rate of COs is A, ¢’ is the
adsorption rate of oxygen and ' is a coefficient modeling the velocity of changes in the
surface structure.

The threshold concentration c¢ separating the growing from the shrinking averaged surface
structure is modeled by ¢=(u+wv)/0.4. The third equation is coupled with the v and v-
equation only by this threshold.

v = p(l—u—v)— Nuw (3.1)
= oda(l—u—1v)* - Nuw (3.2)

. K(l—a) if ¢>1

¢ = { —k'a if c<1 (3:3)

The equations can be scaled with ¢—t/p so that it yields for A=X"/p, oc=0'/p and
K=k'[p

u = 1l—u—v—Auw
v = oa(l—u—v)?—duv (3.4)
a = K’(g(ua v, 6) o a‘)‘

The discontinuity of the right-hand side of EQUATION (3.3) is smoothened with the func-
tion g:=g(u,v,e) so that the flow becomes differentiable. The conditions on g are as
follows.

Definition 3.1 The function g:=g(c,e)€C™ is called a smoothening function of the
jump of height 1 at c* if

(1) it is monotone and ranges in [0,1] CR,

(2) g=0 if c<c*—e, g=1 if c>c*+e,
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(3) g behaves well when perturbed with a Poincaré series.

As an example g can be realized with the flat function gy in the following way:

g(c,g) — go(c— (1—8)) with go(:v) = { e% if >0

golc—(1—¢))+go(l+e—c) 0 if z<0

Its derivative again is a C'*® function converging to a ¢ distribution for ¢ — 0.

The vector field of the system of differential equations yields a flow ¢ on Q=PUU,
where z is a solution vector z=(u,v,a)’, P is the prisma P:={z € [0,1®| u+v <1},
and U.={z€R?®| |[r—%|<e, £ € 0P} a small open neighborhood.

Remark 3.1 The closed set P CS) is positively invariant.

This can be shown easily, since the vector field on dP points into the prisma P.
Dynamical systems generated by more than two differential equations may exhibit chaotic
behavior. But in this case it can be shown that as a first approximation, the dynamics
can be described as a planar system. The parameter A is very large in comparison to the
other parameters of the system (see TABLE 2.1). Transforming with v=¢€7, e=1/X yields
the following system

v = 1—u—el—uv
ev = oa(l —u—e€v)® —ud . (3.5)
a = H(g(u,eﬂ,e) o (l)

Rename ¢ =wv and consider the vector & an asymptotic expansion of Poincaré type:

o
T = g €Ty, = xo+€ex; +o(e) with € < x4, < 1, i=1,2,3, m=0,1,2,...

m=0
Differentiate and get
Uo+ ety = 1—up— eu; —evg — (ug + euy)(vo + €vy) + o(e)
2

ey + €01 = o(ap+ear)(1 —ug — euy — evg)® — (ug + eur)(vo + €v1) + o(e)

do + 6&1 = K)(g — ap + €a1) + 0(6)

such that a comparison of coefficients yields the following system for ¢°

’l.t() = 1- Ug — UV (36)
0 = oao(l—up)® — uvo 3.7

ag = k(g(ug,0,¢) — ag). (3.8)
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The system for €® resembles a system for A — oco.
The term ugvo in the first equation can be replaced by cag(1—u)?, resulting from the
second, algebraic, equation. A planar system remains as a first approximation.

’l'j/() = 1- Ug — O'CL()(I — U0)2

ao = k(g(ug,e) — ap) (3.9)

Remark 3.2 The asymptotic expansion is singular for ug=0.

That can be seen when solving EQUATION (3.7) for vy

2
vy = M for wg # 0.
Ug

A consequence of this singularity is that the planar system defined on the unit square is
no longer positively invariant: The vector field at ug=0, ag>1/0 points out of the unit
square. But the fixed points of the system are away from uo=0; the local analysis of
the planar system can be carried out without thinking about the uniform validity of the
expansion in the whole domain.

3.1.1 The Hamiltonian System

There are at most three fixed points or equilibria for the planar SYSTEM (3.9). The
obvious one that exists and is stable for all parameters is E; =(1,1). The fixed points E»
and FEj5 develop out of a saddle-node bifurcation when the convex graph of the hyperbola
1/0(1—u) penetrates the monotone smoothening function g. These two fixed points are
of interest for the local analysis.

The linearization at Es= E3 might as well have a double zero eigenvalue with a matrix
01

0 0/
With THEOREM A.3 the higher order terms can be put into a Poincaré-Birkhoff Nor-
mal Form where they appear as homogeneous polynomials. The successive steps of the
transformation are derived in a constructive way as described in the proof. The uni-
versal unfolding of the double zero eigenvalue follows the form of BoGDANOV [3]. The
transformation needed to put a vector field into normal form is formal, but it cannot
be determined how precisely the dynamical behavior of the normal form represents the
behavior of the nontransformed equations.

The chosen complementary space G of ad L(JH3) in H, (the space of homogeneous
polynomials of second order (and two variables)) is spanned by the vectors

Gy = span{( 3?2 ), ( xOy )}a He = ad L(Hy) & Gs.

in Jordan normal form
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A normal form for the nonlinearities up to terms of second order looks as follows

T =

)
y = kix® + kyzy. (3.10)

Note that for SYSTEM (3.9) the transformation of the quadratic part doesn’t bring in
additional errors since it turned out that (I+DP)~'=1—DP in this special case.

Let a* be the second coordinate of F5. The transformation is done with a Taylor expansion
of the vector field where Ej is shifted to zero. The transformation

up = x—C —oa*(z—0O)?
ay = o(a*)?(x—y—0)
with

2) o(a*)?

C = (1—
o/ 2g'ca* — g"

results in SYSTEM (3.11). There is no term according to the basis vector ( a:Oy ) of Gs.

").:,’ = y
. Kg' Kg" 2 (3.11)
Y e+ (1—K)y (a* 20((1*)2>x

YA

8y

~20 @ C

Fi1G. 3.1: The Hamiltonian system in the kinetic equations for the coordinates z and y.
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The constant term takes the form

clzClsz(ﬁ—l)—l—sz(g—l— 9" )

o a*  20(a*)?

such that for o =0, the expression for C' and in consequence c; is zero. If in addition
k=k.=1, the linearization in zero has a double zero eigenvalue and is in Jordan normal.
For k=1 the SYSTEM (3.11) is an integrable Hamiltonian system with Hamilton function

2 3
H(z,y) = L —C]_.’L'—C3x— (3.12)
2 3
! 1
and a coefficient c3 =& g__9 .
a*  20(a*)?

The Ljapunov center theorem (see THEOREM A.4) can be applied, showing that there
is a branch of noncritical periodic orbits, even for the perturbed vector field f(x;z,y)=
JVH+(1-£)(0,y)".

H is a Ljapunov function for the flow ¢ induced by the vector field f for x> 1 since then

H(z,y) = VH - f(k;z,y) = VH - JVH + (1—5)|(0,9°)| = (1 - r)3/?,

such that H(:c,y) <0 for all y#0 in an appropriate neighborhood. H(x,y) >0 for k<1
showing that this bifurcation is transcritical. There are no noncritical periodic orbits in
a neighborhood of zero for k#1. Parameterizing the branch of solutions with s € (—¢,¢)
yields k(s)=1. It means that in the bifurcation diagram the periodic solution branches
perpendicular off the zero solution.

Denoting the homoclinic orbit of the Hamiltonian system with T'(t) = (2¥,yT) the Mel-
nikov function (see APPENDIX A.1.1) for the perturbed system is

[o¢]

M) = [ @- R d
—0o0

and M(k)=0 again only if k is critical. The trace of the Jacobian at the saddle is

1—k, indicating again a transcritical situation for the bifurcating periodic orbits of the

saddle-loop.

Remember that here transformations up to second order do not bring on additional errors.
Higher order terms in the normal form do not change the observations made here.
Numerical solutions of the nontransformed system also show a slightly deformed but
qualitatively similar behavior (see FIGURE 3.2 on the next page).

3.2 Modeling Hysteresis

Systems with a coupling that only switches between two different reaction mechanisms
might behave in the described nongeneric way. It is more realistic to model these switches
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11

CO-Concentr,

F1G. 3.2: The Hamiltonian system is valid not only in a small perturbation of the critical situation but
also for parameters far away from the critical ones as shown here for o >>0, and k=k.=1.
The area of decreasing catalytic activity (a¢<0) is marked grey.

with a hysteresis loop. Then the generic situation of the unfolding of a double zero
eigenvalue appears in the system: The saddle-node, Hopf and saddle-loop bifurcation
occur one after another in parameter space when continuously varying the parameters. It
depends on the sign of the coefficients in the unfolding whether the limit cycle is stable
or not. For the model described here, a stable limit cycle is detected for all bifurcation
problems.

This result is obtained with a change in the third equation of SYSTEM (3.4). A cubic-like
function h:=h(a,B) is introduced that has the following properties for each parameter 3:

(1) h:[0,1]xR—R, heC?
(2) h(0,8)=0, h(1,8)=1, A"(0.5,8)=0
(3) The graph of h is a subset of the closed unit square.

The parameter § is introduced to control the extreme points or humps of A. This is better
shown in a special example that is constructed for the implementation of h. It is a cubic
polynomial of the form

2

and its extreme points lie inside the unit square for 4 <[ <16. Instead of the SYSTEM
(3.4) the model to be discussed is

h(a,B) == Ba’® — %(f + (1 + é)a (3.13)
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t = l—u—v— 2w
v = oa(l—u—v)?—Auv (3.14)
a = k(u+v—h(a,pB)).

A formal expansion in terms of ¢ again leads to a planar system for terms of order & of
the form

v = 1—u—oa(l —u)?
a = F‘:(u_h(aaﬂ))
This system, too, has at most three fixed points. Following the same method as in the

previous section, namely, shifting the critical fixed point E3=(u*,a*) to zero and making
a Taylor expansion results in

(3.15)

2
a — oa*u? +—ua—aua

( ") a*
: Z“’ 1
a = RKU—K & k_

The Jacobian at this equilibrium reads

U = uU-—

1

1 —— -

Alg, = o(a*)?
k —kh'

and the eigenvalues are

A2(Es) = %(1 — kh' + \/(1 — kh')2 + 4f€<h' — a(;*)2>)'

It is easy to deduce the critical parameters from the above eigenvalues: Either the term
in front of the square root has to be zero, or the term under the root evaluates to zero.
This is true for k,=h'"!, or o.=((as_3)2k')"". In this system a Hopf bifurcation occurs

for the critical parameter £ when h'(a*) < ——— (which is only possible for the node
o(a*

E3), and the critical o causes a saddle-node bifurcation at a limit point where Ey= Ej. If
both parameters are critical, the linearization A is similar to a Jordan normal form with
double zero eigenvalue.

(1 = ,a (1 0 1 =N 1 0 \ (01
A_<h’ —1>;‘S AS‘<1 —h’)(h'—l —1>(h"1 —h'—l)_(o 0)

The unfolding of the Takens-Bogdanov point then results in a system



3.2. MODELING HYSTERESIS 29

T =y
Y = —ci+coy+ c3x? — cay (3.16)

and the transformation needed is

= £+ C—oa*(z—C)?
o(@)*(z—y+C)

with positive constants ¢;, C, except for co which is indefinite. Note that the transforma-
tion is a formal one derived from the comparison of coefficients for the successive linear
and quadratic terms, neglecting terms of higher order. This makes it valid only in a small
neighborhood of the fixed point. Nevertheless the transformation is sufficient in order to
judge the stability of the bifurcating solutions. The coefficients of the system are functions
of the parameters o and  that still have a physical meaning. *

K ( 1\’ 1
—( A — 7> ko(a*)?h" (h' — 7>
*\2 *)2
o = 2 o(a*) co = 1—kh' + o(a*)

2
? +O_(a*)2hll +0’(a*)2h”

a*

2
c3 = g(—* + a(a*)2h"> cs := Ko(a*)?h”
a

1_ —
0'(0,*)2

+ O_(a*)ZhIl

a*

fc
The coordinates of the fixed points are x5 ==+ 1. +C, and y;2=0. Note that C is
C3

1

(a*)2' Then the Jacobian
g

positive since h'(a*) <

0 1
4= ( :]:2630 62:|:C4C >

has the following eigenvalues indicating a saddle at (+C,0) and a node at (—C,0).

'For example o is the coefficient of the adsorption term of oxygen, and this is proportional to the
partial pressure of oxygen and reciprocal to the partial pressure of CO, both free parameters in the exper-
iment. The other parameter x is proportional to the rate of phase transition and therefore temperature-
dependent, and (due to scaling) it is reciprocal to the partial pressure of CO, too. If the parameters are
intended to be varied independently, the method of choice should be to vary oxygen pressure.
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1
A12(+C,0) = 3 <02 —c4C+ /(ca — csC)2 + 8030) Saddle

1
Ap(=C,0) = 2 (Cz +¢4C + 1/(c2 + c4C)2 — 8c3C) Node

The transformation can be proved at the critical parameters: A saddle-node bifurcation
occurs for C=0 and this is the case for the critical .= ((as—3)2k’)"'. A Hopf bifurcation
is possible for co=—c,C < 1—kh'=0 < r=h""1.

3.2.1 The Hopf Case

) . . 0 .
The resulting system now has a term according to the basis vector ( . ) of § with

a coefficient c4. As a consequence the bifurcating branch of periodic solutions does not
behave like in a linear (Hamiltonian) system but tends to one side. In order to compute
the stability criterium (see THEOREM A.7) the SYSTEM (3.15) has to be described in the
coordinates of the kernel. The complex eigenvectors b, b of the critical eigenvalues form

a basis & 9= ( (b+b) (b b)) that is

6 = < }i ) 6 — ( —h’\/(h'a(oa*)z)_l —1 )

After the basis transformation, abbreviating 1/(h'c(a*)?)~' —1=,/—, the system has the
form

: RN
T = -y, _ﬁZﬁh(k)(a ¥
k=2

o0

1 1
\/_k2k'

oa*h’'

ey ) fﬁ(wﬂ/r) j}i(wyf)%

which is the standard form of the Hopf bifurcation. The stability criterium computes to

o ) - () et o

which is negative since the function A modeling the hysteresis has positive A", A", and
h' in E3. Hence each term in the bracket is negative.

The Hopf bifurcation is supercritical for all positive parameters, the stable node loses its
stability to the branch of periodic solutions.

h(k) (a*):Ck

y o= oy oty —
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3.2.2 Bifurcation from a Homoclinic Orbit

The parameter range where bifurcation from a homoclinic orbit takes place can be detected
with Melnikov theory.

Return again to SYSTEM (3.16) with nonzero ¢ and c4. It shall be regarded as a pertur-
bation of a Hamiltonian system where these two coefficients are zero.

Hamiltonian system perturbation
T =y
y = —ci+ czx? + ColY — C4TY

The Hamilton function for this system is similar to EQUATION (3.12) with different coef-
ficients. See also FIGURE 3.1.

2 caz®

H(z,y) = %—I—clfv— 5

H is a first integral and its value at the saddle point (+C,0) is the same as for the
homoclinic orbit connected with the saddle and lying around the node (—C,0).

c 2

H(+C,0) = 6,C - 22 = Z¢iC

3 3
This value occurs again on the ordinate at —2C.
For these parameters the homoclinic orbit can be written as follows.

L(t) = (z",9") = <C — 3C sech’(t), 3C4/2c3C sechz(t)tanh(t)>

Since this is an autonomous perturbation the Melnikov function is time independent and
computes to

M(Cz, C4) = / Co (yl—‘)2 — C4$F (yI‘)2 dt

o0

= / c2(18¢3C%sech? (t)tanh?(¢))

o0

—c418¢3C* (1 — 3 sech®(t))sech?(t) tanh?(t) dt.

Whenever M(ca,cq) =0 the system has a homoclinic orbit. What has to be solved is

02180303/ sech®(t)tanh?(t) dt = c4180304/ (1 — 3 sech?(t))sech*(t) tanh®(t) dt.

—0o0 —0o0

00 t hk—|—1 ¢ 00 9
With sech?(t) =1—tanh®(t) and / sech?(t)tanh*(t) dt = anTl() =i

—00 —00



32 CHAPTER 3. TREATING NONLINEAR KINETICS

and dividing by 18c3C? this evaluates to
702 = —5C4C.

Whenever this condition is fulfilled, the homoclinic orbit is preserved in the perturbed
Hamiltonian system. It is called the saddle-loop condition and with ¢y =1—kh' —c,C it
can be written implicitly as

2C4C .
- =

The trace of the Jacobian at the saddle of the homoclinic orbit has to be negative to
indicate that periodic orbits bifurcating from the saddle loop are stable (see THEOREM
A.5). This is the case for the range of parameters inbetween the Hopf condition and the
saddle-loop condition.

0.

SL(o,k,8) = 1—kh' —

3.2.3 Inbetween Hopf and Saddle-Loop Conditions

The stable periodic orbit lies inbetween two manifolds in parameter space indicating
the necessary conditions for Hopf bifurcation Ho(o,k,3) and saddle-loop bifurcation
SL(o,k,3). At first glance Ho(o,k,8)=1—kh' seems not to be o-dependent, but it is,
due to the o-dependency of the coordinates of F3 that enter h’.

Ho(o,k,B8) = 1—kh =
2¢4C
SL(o,k,8) = 1—kh'— % =
These equations are identical for ¢4C=0. In the three-dimensional parameter space their
two-dimensional manifolds touch each other at a curve for Hamiltonian systems, that is
ca=c4=0, and a curve for B-points, that is ¢o=C=0.
Sinse a* is always positive and for positive parameters k and ¢ the following expressions
are equivalent:

0
0

ca = ko(a*)’h" = 0 & h"=0
1 oy
C = 5% — —0& ——K=0
—+a(a*)2h” oa
a*

This result can be illustrated with the specified cubic polynomial (EQUATION (3.13)). The
first case of Hamiltonian systems occurs for h” =33(2a*—1)=0, that is either =0 (the
polynomial h(a,B3) then degenerates to a linear function), or a*=0.5 which is equivalent
to o=4.

The second case, when C=0, represents the curve of B-points. The position of the
manifolds in parameter space can be analyzed by implicit derivatives and sketched as in
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FIGURE 3.3 on the following page. With respect to 3, the saddle-loop manifold always
lies above the Hopf manifold. The dynamic behavior for increasing o is sketched in
FIGURE 3.4 on the next page. At a critical value o, a saddle and a node emerge from a
limit point, the stable node turns unstable when the Hopf condition is reached; a stable
limit cycle bifurcates. Since the branch of limit cycles is not compact and cannot return
to the same bifurcation point, it either is unbounded in period or returns to another Hopf
point. As long as there are no turning points on the branch, the two values of o that
indicate homoclinic orbits mark a gap of limit cycles. Increasing x leads to a merging of
both homoclinic orbits and finally a penetration. But for £ in consideration here, there
is a gap whithout periodic solutions.

This result is also checked with the bifurcation software AUTO of E. DOEDEL revealing
no additional features of the nontransformed two and three variables system, ensuring
that the transformation preserves the qualitative behavior not only in an approximative
sense.
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F1G. 3.3: The surfaces for Hopf condition (shaded) and saddle-loop condition (blank). The bold dashed
lines mark the curve of B-points (to the left) and the curve of Hamiltonian systems. Stable limit
cycles can be detected for parameters inbetween both manifolds.

Fi1G. 3.4: A sketch of the dynamics. From left to right the parameter o is increased. The solid part of the
parabola indicates a stable fixed point, the dash-dotted line is the saddle and the dashed line the
unstable node. SN denotes the saddle-node bifurcation. There are two Hopf bifurcation points
Ho and two homoclinic orbits SL, and inbetween in either case a branch of stable periodic
solutions.
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4 Spatio-Temporally Oscillating Solutions

4.1 Adding a Fick-Type Diffusion Term

A stable equilibrium of a planar system can be destabilized to nonconstant steady solutions
by a diffusion term, but not to time-periodic solutions (see CHAPTER 5). This is due to
the fact that diffusion coefficients always diminishes the trace of the Jacobian. What
happens in the neighborhood of unstable oscillatory constant solutions when diffusion is
added is not accessible for the theory. Especially since Neumann boundary conditions
are also accepted by constant but time-periodic solutions, the diffusion not necessarily
introduces attractors to the system that are not already known from the kinetic system.

In the computational experiments of this chapter the kinetic system is therefore fixed to
the situation that there is an unstable node and no periodic solution. The situation is
as follows: Besides the asymptotically stable constant state F;, there is a saddle E5 and
an unstable node E3 which is oscillatory. There is no periodic solution for the kinetic
system, and as a consequence F; is globally attractive. This global attractor is a so
called poisoned state and corresponds to a situation where the whole surface is covered
by a single reactant. This state should be avoided since no reaction takes place any more.
The influence of the diffusion operator can then be seen whenever the solution is bounded
away from the only attractor of the kinetic system.

The mobility of carbon monoxide on the surface is modeled with a Fick-type diffusion
term solely in the first equation of SYSTEM (4.1). The nonlinearities always stem from
the reaction kinetic.

@ = diAu + 1—u—oa(l —u)?
a = H(u_h(aaﬁ))

Throughout this chapter the exact values for the kinetic parameters are o =4, k=3, and
B =5. This fixes F3 at (0.5,0.5).

(4.1)

4.1.1 Computational Setting

The reacting fronts propagate across the whole domain and there is no need for adaptive
grid refinement. Using a rectangular equidistant grid suits the problem and no further
efforts are made to improve the discretization scheme. In each time step only the nearest
neighbors are used to compute the diffusion term. Homogeneous Neumann boundary
conditions are implemented as reflections at the boundary. For a one-dimensional setting
on a unit interval this comprehends the left and right neighbor grid point and at 0 and 1
twice the right and twice the left grid point. For a two-dimensional setting four nearest
neighbors are used in a 5-star term for the diffusion operator.

The discretized system of ordinary differential equations is solved with the LSODE pack-
age (see HINDMARSH [23]), using numerical estimates of the Jacobian matrix. Time
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discretization is done implicitly with a maximal step size of t=0.01. The error tolerances
are 1x 1078 relative and 1 x 10712 absolute. The size of the spatial grid then is adjusted
according to the value of the diffusion coefficient such that the spatial wavelength is best
resolved.

4.1.2 About the Graphics Realization

In the figures of this chapter the CO coverage is shown as colored surface. The color
mapped to the surface represents the local fraction of the amount of catalytically active
phase of the surface, the 1 x 1-phase. The color ranges from light green for the hex phase
over blue and red to light yellow for a complete 1 x 1-phase.

For one-dimensional computations the spatio-temporal development is displayed as (z,t)-
plot where the time axis is shown to the rear.

The results of simulations in two space dimensions are shown as snapshots of the time-
periodic attractors. Animated sequences show the transient dynamical behavior before
the attractors of similar waveforms are reached for various initial data. These evolutions
can be displayed with the program cnom2.0 (see KROMKER [32]).

4.2 Results in One Space Dimension

To guarantee the spatial step size h to be of the appropriate order of magnitude, i.e. h%~t,
the space discretization for e.g. d; about a hundredth is 100 gridpoints on a unit interval,
such that h2=d; *(100)"2~0.01. This indeed is the coarsest grid, and finer grids are only
used for even smaller diffusion coefficients.

Fi1G. 4.1: There exist nonconstant steady states FIG.4.2: No nonconstant steady states are found
where the u-equation is continuous and for diverse initial conditions at d; =0.14.
close to its value at E3, whereas the a- FE; is globally attracting.
equation is discontinuous as marked by
the abrupt color changes (d; =0.16).
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From FIGURE 4.1 to FIGURE 4.5 the diffusion coefficient for surface diffusion is diminished.
The initial conditions are either small gradient, cross gradient, or the data is randomly
distributed with a mean value at the unstable fixed point in request, that is E5. Testing a
small defect in the middle of the unit interval, the initial conditions are the same for both
equations; they are constant above and below the critical E5 with a small discontinuity
of height 0.0001 at the middle of the unit interval.

The following observations can be made:

For a diffusion coefficient d; greater or equal to 0.16 steady patterns can be recognized,
but their shapes strongly depend on the initial conditions. To resolve the interfaces
correctly, adaptive regridding at the discontinuity has to be made. Here this has not been
investigated further.

If the diffusion coeflicient is close to 0.16, the upper and lower parts of the solutions are
oscillatory but damped out to a discontinuous steady solution for the a-equation and a
continuous solution for u (see FIGURE 4.1 on the facing page).

Diminishing the diffusion coefficient leads to an increase in oscillatory behavior; no steady
nonconstant solution can be detected whenever these oscillations in the u-equation in-
crease in amplitude after once the formation of clearly separated phases in space has been
established (see FIGURE 4.2). Then again the CO-poisoned state is the only attractor to
be found. From the point of view of asymptotic behavior the simulations do not differ
from the kinetic equations.

F1G. 4.3: A first mode standing wave for d; =0.03. Left: Initial conditions are the same for both equations,
they are constant above and below the critical E5 with a small discontinuity of height 0.0001
at the middle of the unit interval. Right: Here the initial conditions are randomly distributed
around F3 with a maximal variance of 0.001. The same asymmetric waveform establishes itself.

For a diffusion coefficient d; =0.03 a first mode standing wave establishes itself which is
asymmetric insofar as its amplitude is larger at one side of the boundary than at the other
(see FIGURE 4.3).
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F1G.4.4: A second mode standing wave for d; =  Fi1G. 4.5: Period doubling. Since it takes a much
0.01. The initial conditions are the same longer time until this attractor is estab-
as in the left part of FIGURE 4.3. lished, the figure shows 500 time steps

when the waveform is reached, compara-
ble to the initial 500 steps of the previous
figures (di =0.005).

Then there is a well-separated gap where the system behaves again like the kinetic system
which has no other attractor than the CO-poisoned state.

For 0.013 > d; >0.009, however, there is again a spatio-temporal attractor of a now sym-
metric standing wave resembling a second mode oscillation. Again its amplitude is largest
at the boundary and much smaller in the middle of the domain.

Further diminishing the diffusion coefficients leads to a period doubling for example at
d; =0.005 rather than to a higher spatial mode (see FIGURE 4.5). For even smaller d;
(and increasing the number of gridpoints appropriately) this leads to unpredictable chaotic
behavior, and finally there are no other attractors found than the constant E;.

4.3 Results in Two Space Dimensions

For two-dimensional computations of temporally oscillating attractors animated sequences
better show the temporal development. In order to interpret the figures on the following
pages, imagine that light blue parts are moving upwards whereas light yellow parts move
down. Periodicity comes into play because of the dynamics of the problem: When moving
upwards, the color changes from blue to yellow. This behavior can already be observed
in the (z,t)-plots of the one-dimensional computations and is a result of the nonlinear
dynamic of the reaction. When the catalytic activity is high, the reaction rate is also
high, and this diminishes the coverages of the adsorbed reactants. Below the threshold
of critical coverages, the catalytic activity decreases, and the adsorption of the reactants
predominates the loss by the reaction.
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Thereby the curly patterns in FIGURES 4.9 to 4.12 are spiraling around their respective
cores.

The missing row surface structure which causes an anisotropy of the diffusion can be
scaled out, see SECTION 2.4. Target patterns and spirals which are elongated in the
direction of the missing row appear circular in the new coordinates.

Due to the symmetry inherent in the problem setting, only one eighth of the following
figures is computed, namely a triangle from the center of the displayed domain to one
corner and the middle of an edge. For a better image presentation the reflection of the
data is done by the graphics program.

The initial data is taken close to the unstable constant solution E3 and is randomly
distributed at level 0.5 with a maximal variance of 0.0001. The difference to the one-
dimensional case lies in the a-equation: Various initial data are tested on their capability
of revealing comparable attractors. They indeed have the same wavelength or develop
spiraling cores of the same size in case that initially there are connected clusters above
and below the critical a-coordinate of E3. This corresponds to the idea of the catalytic
activity stemming from a certain surface structure. Such structures must have a certain
extension to be recognized.

The scenario remains the same as in the one-dimensional case in so far that diminishing
the diffusion coeflicient is reflected by a decrease of the wavelength. No period doubling
is detected in two space dimensions, spiral cores arise instead.

Discussion

The kinetic parameters are fixed to the situation of a globally attracting fixed point F;
in order to gain insight into the effects of the surface diffusion of a single reactant on the
computed solution.

The diffusion is temperature dependent, and the lower the temperature is the smaller is
the diffusion coefficient. This corresponds to the experimental observations described in
CHAPTER 2 in so far that the standing wave patterns are detected for a much higher tem-
perature ! (about 550K, see FIGURE 2.1 on page 7) than the spirals (T'=448K, compare
FIGURE 2.12 on page 21).

The one-dimensional computations only give a first impression of the effect of a diffusion
operator in the u-equation. Irregular behavior that begins as period doubling is found
for small diffusion coefficients (or large domains) in this setting.

For the same diffusion coefficient in the two-dimensional case very regular periodic at-
tractors are found. They correspond to higher modes of spatial wavelength.

Finally spatio-temporally periodic solutions coexist with an area where a constant (poi-
soned) solution is established. But it is not at all clear if this phenomenon depends on the
discretization that turns the PDE problem into a finite dimensional system of ordinary
differential equations.

!Temperature also changes the kinetic parameters but these are as well controlled by the partial
pressure. The experimentalist will always adjust the partial pressures of the reactants to values for which
the phenomenom is best observed.
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F1G. 4.6: Initial conditions for the following figures are all as shown here. The height above the grid
represents the u-data which is randomly distributed at level 0.5 with a maximal variance of
0.0001. The initial data for the a-equation is shown in color. It is also randomly distributed
with the same variance, but in the more blue colored area the data is below, outside the circle
it is above 0.5 (the a-coordinate of Ej3).

F1G. 4.7: Standing wave solutions are established Fi1G. 4.8: The second mode standing wave solution
for the same diffusion coefficients as in the clearly reveals the reflection process of the
one-dimensional case (d; =0.03). graphics representation (d; =0.01).
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Fi1G. 4.9: The smaller the diffusion coefficient gets,  F1G. 4.10: The locations of the spiral cores depend

the shorter is the wavelength. Spiral cores on the initial data, the wavelength is de-
are established to fit the waves into the termined by the diffusion coefficient (d; =
prescribed area with no flux boundary 0.0005).

conditions (d; =0.001).

oy,

:/“
NG

€ 4

F1G. 4.11: Target and spiral patterns are formed as F1G. 4.12: Coexistence of a spiral pattern and an ad-
a result of no-flux boundary conditions sorbing state which is poisoned with ad-
(d1=0.0003). sorbed CO and thereby catalytically in-

active (di =0.0002).
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5 Diffusion-Induced Instabilities

5.1 The Turing Instability

Diffusion-induced instability or Turing instability means that for a reaction-diffusion sys-
tem of at least two scalar equations there is a spatially constant steady solution which is
asymptotically stable in the sense of linearized stability in the space of constant functions.
Nevertheless, it is unstable to spatially inhomogeneous perturbations.

Therefore the quotient of the diffusion coefficients d; and ds has to lie beyond a critical
value to be determined out of the eigenvalues of the system. Consider the system

t = diAu +  fi(u,v,A)
v = dyAv  +  fo(u,v,A)

with periodic or homogeneous Dirichlet or Neumann boundary conditions and, for the
sake of simplicity, on an interval of unit length.

(5.1)

u(0,t) = wu(l,t), v(0,t) = wv(l,%) Periodic boundary
u(0,t) = wu(l,t) =0, »(0,t) = v(l,t)=0 Dirichlet boundary
uz(0,t) = wugx(l,2) =0, v,(0,8) = wvx(1,¢) =0 Neumann boundary
The diffusion coefficients and the kinetic parameters A form the set of parameters. With-
out loss of generality assume the constant zero to be a solution for a fixed set of kinetic

parameters. Otherwise the constant solution is shifted to zero. Let A denote the Jacobian
of the kinetic equations

o5 oh

4 = fi(u,v) du v a1 G

. o Ao = = :

v = fo(u,v) Of: 0fs a1 G2
ou Ov

The general solution of the linear system is expressed as

(u(z,t),v(z,t)) = Z Tm€ ™ (Om(z), Ym (),

m=—0oQ

{2y (Om (), Ym(2)) }(m=0,41,£2,---) are the eigenvalues and eigenfunctions of the fol-
lowing eigenvalue problem

Ao = didge + 0110 + 129
A = dotPgy + a2 + axny

with the appropriate boundary conditions. The eigenfunctions of this system are of the
form
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¢m(x) = amei”mw: ¢m(x) = bmei”mw

with g, =mm (m=0,£1,£2,---), and the a,, b, are not independent of m. That means
for a,,=1 there is

b — dLUm2 — a1
" a2

Subject to homogeneous Dirichlet boundary conditions the set of eigenvalues of —A are
{tm?p = (mm)? | m=1,2,---}. Subject to homogeneous Neumann boundary conditions
the set of eigenvalues of —A are {2y = (mm)?| m=0,1,2,---}. For periodic boundary
conditions or the flux on S!, that is the sphere, all these eigenvalues are double except
that of zero.

Consider solely the kinetic system. The eigenvalues of a linearized planar system are the
roots of the characteristic polynomial

xa(A) = A2 —trA A +detA =0

over the real field with possibly complex conjugate solutions. Since it is required that the
zero solution is asymptotically stable, the trace of A is negative while detA is positive.
The linearization of the kinetic equations together with the Laplace operator is denoted

by
- a; — dle2 a2
Al = :

2
a21 a22 — d2,um

The trace is diminished trA =trA — (di+do)pm? and the determinant is altered to detA =
det A — (ay1da+ asedr) pm® + didapim®.

Since the eigenvalues p,,2 of —A are always real positive scalars, and the diffusion coef-
ficients are positive, trA <trd<O0.

The determinant detA is a quadratic polynomial in u,2 and may become negative al-
though not for d;=ds=d. Then detA=detA—trA dp,2+d>u,* is always positive for
positive determinant and negative trace of A.

2

But for unequal diffusion coefficients there are two positive real roots of detA= 0, namely,

1
I/i = — alldz + a22d1 + \/(a11d2 + a22d1)2 — 4detA d1d2
dyds
if and only if

a11d2 + a22d1 >0
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and
D = (alldz + 022d1)2 — 4detA didy > 0.

Solving detA <0, the roots v+ give an upper and lower bound
v < ,um2 < vt
such that the following theorem holds.

Theorem 5.1 Assume that the eigenvalue problem satisfies —trA >0, detA>0 and
detA < 0. Then the m™ eigenvalue )\, has a positive real part if and only if the mt*
spatial frequency ., =7m satisfies the inequality v~ < 2 <v'.

This shows that the spatially constant solution is unstable to perturbations with noncon-
stant functions of spatial frequency in the above interval.
In terms of bifurcation this means that a pair of diffusion coefficients (d;,ds) satisfies

detfl(um, dl, dz) = dldg,um4 — ((llldz + a22d1)Mm2 + detA = 0.

This is the required degeneracy that does no longer allow to apply the Implicit Function
Theorem. At such a point there are multiple solutions.

This equality yields a curve of critical parameters for every u,2¢cspec(—A) in the pa-
rameter space (di,d>) € R% of the form

0,22d1 ,Ltmz —detA

dg(um’dl) - dl,um4 - all,um2 -

The principal eigenvalue with respect to Neumann boundary conditions u,,2=0 is not
within the bounds v*, so that perturbation with the corresponding eigenfunction 1 settles
again to the constant solution.

For Neumann boundary conditions it is therefore not the principal eigenvalue but py ==
that will yield a nonconstant steady solution. Note that the corresponding eigenfunction
changes sign. The solution for an appropriate initial value problem is always a layered
solution with values above and below zero.

Consider d; to be fixed with d; >>d,, then dy serves as the bifurcation parameter. For
ds < dj, the monolayered solution is stable whereas all other multilayered solutions remain
unstable. The function u(z,t) will stay close to the destabilized zero solution, but for the
v-equation to be a bounded solution it is not sufficient to look at the linearization in an
equilibrium but at the SYSTEM (5.1). The function f> should be of sigmoidal shape.

2

The literature on the matter is vast; here only a few of those articles related to the topic
of bifurcation, standing waves or applications to catalytic reactions are mentioned. See
for example MAGINU [35] who proves a stable stationary wave solution considering the
”waveform”, since it is not possible to localize the wave itself.
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NISHIURA [39] investigates the case of recovering the stability of the branches for the
different spatial modes from the singular shadow edge with singular perturbation theory.
Further investigations with this method can be found in [16].

In all these settings the trivial solution is stable for zero mode perturbations.

KopPELL and HOWARD [28] consider the cases when the trivial solution is unstable and
document numerical results of standing wave solutions for the Neumann case.

LAkOS and TERMAN [33] consider bifurcation from the constant zero solution to a positive
nonconstant solution in the Dirichlet and Neumann case regardless of the asymptotic
behavior of zero in the kinetic system. Their result is that there are no such steady
solutions of only one sign for a reaction-diffusion system of two equations in the Neumann
case. Their conclusion nevertheless has to be corrected: They refer to the mathematical
models of isothermal catalytic processes as proposed by the group of ERTL. Since the
experiment also shows steady nonconstant patterns as described in [26], they claim that
applying their result to these models excludes such solutions. Therefore they demand a
change of the spatial coupling from a simple (and linear) Fick-type surface diffusion to
diffusion models for surfaces that are crowded with adsorbed species.

First of all, if zero is the constant solution from which nonconstant stationary solutions
shall bifurcate, then the surface is far from being crowded. But indeed, all these models
have multiple constant solutions, and in order to apply a local bifurcation theory it is
more natural to choose a positive solution. So, secondly, if such a constant and positive
solution is shifted to zero for convenience, it is not appropriate to look only for stationary
nonconstant solutions lying above. Solutions with changing signs still mean positive
concentrations when shifted back to the original problem.

So their argument dealing with the principal eigenvalue having an eigenfunction of one
sign (Krein-Ruthman-Theorem) does not apply to exclude such steady state solutions in
the Neumann case. Singular perturbation theory tells about how multi-layered solutions
can be constructed and how they recover their stability (see for example NISHIURA [39]
who investigated the case of recovering the stability from the singular shadow edge when
varying the diffusion coefficients).

A last criticism considers the diagonal entries in the linearization of the kinetic equations.
If both of them, a;; and asq, are negative, it is impossible to arrange a change of sign of
eigenvalues of the reaction-diffusion system by varying the diffusion coefficients d; or ds
(see TABLE 5.1). The bifurcation set S in their article is empty then. So their proof can
be essentially shortened since they need not to consider any of the cases where the set S
is empty to prove their theorem 1.3.

5.2 Time-Periodic Turing Solution

With regard to the phenomena of spatio-temporal oscillations, it is quite natural to ask
if there are bifurcations from a stable zero solution to periodical solutions.

In the Neumann case to get a spatial pattern one has to avoid the principal eigenvalue,
which is zero, because it belongs to the eigenfunction that is the constant solution 1.
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This is not so in the Dirichlet case, but anyhow, the trace of A has to become zero to
get a Hopf bifurcation for a two variables system. Then the real part of the eigenvalue
crosses the imaginary axis. This is not possible for any pair (dy,ds) unless the trace of the
linearization of the kinetic equations is nonnegative or at least zero. For trA = 0 there
is the Hopf bifurcation for the purely kinetic system of ordinary differential equations
already and one has to deal with oscillations of constant solutions.

Since most of the realistic models involve a lot of species for which kinetic equations can
be imposed, it seems to be rather artificial to be restricted to planar systems. Increasing
the number of equations frees from being limited to the case of trA = 0. The eigenvalue
condition for the infinite dimensional case of the Hopf bifurcation (see CRANDALL and
RABINOWITZ [10]) can then be verified for negative trA .

A wave bifurcation is a supercritical Hopf bifurcation from a stable steady constant solu-
tion to a stable periodic and nonconstant solution. The bifurcating solution in the case
of Neumann boundary conditions then is a standing wave solution that is periodical in
space and time. In a reaction-diffusion system there are a linear differential operator and
a dynamic part that compete against each other. The constant solution is an equilibrium
point of the kinetic system. The aim is to destabilize this solution by diffusion coeffi-
cients, as in the case of the classical Turing Instability, where a single eigenvalue becomes
positive and the bifurcating solution is a nonconstant steady state. If the real part of a
single pair of complex eigenvalues of the linearization of the whole system at this point
crosses the imaginary axis and the bifurcation is supercritical, there exists a nonconstant
time-periodic solution.

It is not possible to get a wave bifurcation for a two variables system (see TURING [45], and
therein the cases e) and f): e) Oscillatory case with a finite wave-length and f) Oscillatory
case with extreme short wave-length, [...] possibilities [that] can only occur with three or
more morphogens. [...] no attempt was made to develop formulae for these.).

The attempt is now to give formal conditions for the dynamics that make it possible to
arrange a destabilization of a constant solution for a three variables system. The main
idea is to compare the Jacobian A of the kinetic system to the linearization A of the PDE
system at a constant solution.

5.3 Routh-Hurwitz Theory

The number of eigenvalues with positive real part of a linearization is the number of roots
in the right half plane of its characteristic polynomial. This number can be computed
with the help of the Routh-Hurwitz Theorem.

Theorem 5.2 (Routh-Hurwitz) The number k of roots of the real polynomial f(z)=
2" +boz" 1 +a12" 2 4+b12" 3+ (ag#0) which lie in the right half plane is given by
the formula

Ay, A A
k=v<a0,A1, 2 /3 ”)

AR B
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or equivalently
k = V(ao, Al, A3, - ) =+ V(l, Az, A4, . )

with A;, i=1,-n the successive principal minors of a square matrix H of order n, and V
the number of changes of sign of adjacent members in a finite sequence (GANTMACHER
[17], p. 230).

For a system of N equations the characteristic polynomial is the sum of the symmetric
functions (—1)'o;(\)Y % with alternating signs.

xa(A) = A —a XN () A T e (1) Yo A = 0.

The matrix H called Hurwitz matriz is filled according to the Hurwitz scheme with the
coefficients of the characteristic polynomial. It is a square matrix of order N.

( -0y —03 —05 --- e 0 \
1 g2 (o) Og cee 0
0 —01 —03 —O0p
0 1 op o
H = 0 0 —01 —O03
0 0 1
e (=1)N oy 0
\ o (~1)M %oy (~1)Noy )

Their principale minors A;, i=1,-,~ are the so called Hurwitz determinants.

The Routh-Hurwitz Criterion. In order for all roots of the real polynomial f(z)=
2N+ (ap=1>0) to have negative real parts it is necessary and sufficient that the
inequalities

Ay > 0,A >0,--- Ay >0
hold.

Theorem 5.3 An odd number k of eigenvalues in the right half plane is equivalent to
(—1)NdetA<0.

Proof:
N even;
k = V(L A)+ V(AL As)+- -+ V(An_s, An_1)
+V(1,A) + V(Ag, Ay) +---+ V(An_2,An)
N odd;
k = V(1,A1) +V(A1,A3) + -+ V(An_s,An_2) + V(An_2, AnN)

+V(1,A) + V(Ag,Ay) +-- -+ V(An_3,An_1)
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Any=An 1(—1)VdetA for all n. Let (—1)VdetA>0. Let k=1 and A ;=1 and Ay=
1. Then there is exactly one i with V(A; 2,A;)=1 and V(A; 5,A;)=0 for j#1i with
i,j €{1,..5}. In the first case let » and i be even numbers, then this is equivalent to
A;>0 for j<i or j odd, and A; <0 for j>¢ and j even. Then Ay <04 An_1<0. This
contradicts n—1 odd and therefore Ax_;>0.

The other cases are similar and left to the reader. The case where k is even will not result
in Ay <0 since changing sign twice is not recognized by the largest Hurwitz determinant.
Ay and Ay_; are of the same sign and therefore (—1)VdetA >0. The case where k is
odd can always be reduced to k=1. O

The idea behind the wave bifurcation uses Orlando’s formula (see [17])

N(N—l) 1...N
Ayva= (=12 [+
i<k
from which follows that Ay_; =0 if and only if the sum of at least one pair of roots of the
polynomial is zero. In particular this is true for a conjugate pair of pure imaginary roots.

Together with the Routh-Hurwitz Theorem the case of a single pair of pure imaginary
roots and all other roots with negative real part can be characterized by:

(a) A; >0 for i=1,.N-2
(b) Ay-1 =0 (5.2)
(c) (=1)NdetA > 0

The last inequality is needed to keep away from zero as a (multiple) root.

5.3.1 Application to Reaction-Diffusion Systems

The following notations are used: Let the tilde ~ always denote the PDE system and
let the index m indicate the respect to the appropriate mode via the eigenvalue 2
of the negative Laplace operator with Neumann boundary conditions. If 2 is the unit
interval, —A&, = pum2én results in &, =cos(mmx) the eigenfunction for the eigenvalue
pim? = (mm)%,m € Ny. Claiming that all eigenfunctions of A have the form (c1,cz,¢3)%m
with coefficients ¢; € R, they form three-dimensional functional subspaces of the solution
space. The diffusion coefficients appear in the Jacobian as d;,, := ditm?, i=1,..N.

A(,Ltm) =A- D(,Ltm) = (aij)i’je{17___’N} - dia’g(dlma cee 7de)

The trace of a submatrix of A consisting of the ¢; and i column and row will be denoted
as tr(Aiii»). The minors with the same columns as rows will be abbreviated with |Aiii]|.
For reaction-diffusion systems, the number of eigenvalues in the right half plane is the
sum
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k= ikm,

m=0

where the nonnegative integer k,, belongs to the m® spatial mode. Therefore one has
to compute the Hurwitz determinants of all fl(,um) The sum k is zero if and only if the
sign conditions are fulfilled for all m, that is A,(,um) >0, i=1,..,n for all m, or, in short,
A;>0. If no special mode is explicitly indicated, this notation refers to all modes.

Theorem 5.4 A constant steady state solution of a reaction-diffusion system that is sta-
ble against spatially constant perturbations and has equal diffusion coefficients cannot be
destabilized when perturbed inhomogeneously.

Proof:
This can be seen easily when comparing the characteristic polynomial of A with A=A—D
where D is a diagonal square matrix of order ~ with equal entries D:=diag(d,...,d).

xa(A) = Z(—l)iaiAN’i

X@-p)(A) = xa(A+d) = Z(_l)iai()\+ d)V-i

On condition that the roots z; of xa()) all have negative real parts, the roots Z; of
X(4-p)(A) are Z;=2z;—d and have more negative real parts. O

5.3.1.1 Planar Systems

The Hurwitz determinants for n=2 give simple conditions for stable nodes (see TABLE
5.1).

H = —trd 0 Al = —trd >0
o 1 detA )]’ Ay = —trAdetd >0

Two variables reaction-diffusion systems with activator-inhibitor kinetic are widely studied
(see for example [16]). The variable with positive diagonal entry in the Jacobian is called
the activator, the variable with negative entry is the inhibitor. The necessary conditions
on the kinetic equations to yield a Turing bifurcation are:

Conditions for Turing Bifurcation:
(cl) —trA>0
(c2) detA>0
(c3) axn>0



50 CHAPTER 5. DIFFUSION-INDUCED INSTABILITIES

Then an appropriate diffusion coefficient d; can make the term a;;ds+asnd; positive,
although the trace a;;+asy is negative, and thereby change the sign of the determinant
in the presence of spatial inhomogeneities. This is often abbreviated in the rule:

>1 = The inhibitor has to diffuse faster.

Remark 5.1 (cl) and (c2) guarantee a stable equilibrium, (c3) demands the presence of
an actiwator, in the case of two variables systems just a positive diagonal entry in the
linearization of the second equation, the activator equation.

For a wave bifurcation, when % increases by 2 and %, is even, THEOREM 5.3 shows that
then (—1)NdetA(un,) is positive. In two variables systems, the Hopf bifurcation can only
be realized when the trace becomes positive. But in the regular as well as in the singular
perturbation, that is d; — oo or d; ! — 0o, the trace is always diminished by a diffusion
operator, so that trA has to be nonnegative, contradicting the requirement of a stable
equilibrium. The number of equations has to be increased to get a diffusion-induced
supercritical Hopf bifurcation.

5.3.1.2 Systems of Three Equations

The eigenvalues of a system of three equations are the roots of

xa(A) = X3 —trd A + Z |Aij| A —detA = 0.

1<i<j<3
and for n=3 the Hurwitz matrix is
—trA —detAd 0 -0y —o3 0
H = 1 D A4 0 = 1 oo 0
0 —trA —detA 0 —01 —O03

with successive Hurwitz determinants to be computed using the coefficients (—1)io;,
1=1,2,3 of the symmetric functions.

Al = —trd = —01
Ay = —trA(Q |Aij|) +detA = —o109+ 03
A3 = —A, detA = —(—0'10'2 + 0'3)0'3

All three eigenvalues have negative real parts if A; >0 for i=1,2,3 (Routh-Hurwitz Crite-
rion). This is equivalent to

-0 > 0
—01092+03 > 0
—03 > 0 .
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The conditions —o; >0 and —o3 >0 are as easy to check as in the case of planar systems.
The second Hurwitz determinant is critical at the surface 0,09 =03 which is a hyperbolic
paraboloid. For a kinetic system of three equations the number k computes as follows:

Ay Ag)

—, — | = 1, A, A 1, A
A17A2 V( ) 21, 3)+V( ) 2)

k= V(1,A1,

== V(]_, A]_) + V(Al, A3) + V(]_, AQ)

To illustrate the formal computations of &, the following figures give an impression where
the regions of stable nodes are (k=0, shaded areas) and which lines or surfaces separate
the regions for the various numbers of k£ in two and three variables systems. In contrast
to FIGURE 5.1 the three variables system in FIGURE 5.2 shows the possibility of a lin-
earization A having a negative trace and a determinant indicating an even number £,
without necessarily being in the area of stable nodes.

detA detA
A k=2 A

F1c. 5.1: For a two variables system a sign change  F1G. 5.2: For a three variables system the surface
of the trace results in an increase of o102 =03, 03 >0, has to be crossed to in-
k by 2. crease k by 2.

Crossing the surface o102 =03 has no effect on k for o5 <0. Here only the sign of g3=
det A decides if k is one or two.

Qualitatively, the pictures do not change when considering fl(,um) and k,, instead of A
and k, respectively.

If a single diffusion coeflicient is able to induce a destabilization of the stable zero solution,
then k is zero and at least one k,, has become nonzero on varying this coefficient.

On condition that —trA >0, (V(1,A;)=0) it yields —trA> —trA >0, since diffusion only

decreases the trace. Therefore —trA=A; is always positive. Since V(Al,A3) =0 is
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equivalent to (—trA)(—detA)A,; >0, the expressions —detA and A, have to be of the
same sign in order not to change the sum k.

TABLE 5.2 on the facing page lists the various cases for & <2, not considering the case of
detA(p;) <0 for exactly two modes j=m and j=n. If a dependency on a special mode
Wm 1s indicated, for all other modes the same behavior as in the case of stable nodes is
assumed.

What can be observed by now is that a change in sign of detfl(,um) for a single m gives
exactly one positive real eigenvalue as well as in the two-dimensional case (see TABLE
5.1). In general a Turing bifurcation from a stable constant solution to a stable steady
but nonconstant solution can be decided by the sign of the determinant.

Consider the case when k increases by 2 in the system of three equations. This is equiv-
alent to the question: Can diffusion change the sign of the second Hurwitz determinant
without changing the sign of the first and third?

That means that —trA>0 and —detA >0 for all m whereas

Ao(pm) = —trA(pm) D [Alpm)il + detA(um)

1<i<j<3

changes sign for a single m, but A, >0 for all j#m. If this is the case, generically
two complex conjugate roots cross the imaginary axis and the equilibrium is no longer
asymptotically stable. A critical diffusion coefficient leads to As(py,,d;)=0.

Remark 5.2 The case of negative trA and thereby negative trA is assumed. Generically
either detA(uum) or Ag(um) changes sign first.

In the case of a first change of sign of det;l(,um) this is the usual Turing bifurcation
to a steady state solution. If afterwards A2 changes sign, this can only happen for
ST At )is| <O where it has no effect on kn. If the sign of detA(uy) changes back in
this area, two positive (real) eigenvalues e:mst, which of course can meet and become a
complex conjugate pair again. But such oscillating solutions do not necessarily give rise
to a time-periodic solution.

In case of 52(,um) changing sign first while trA and detA are negative, the number k of
etgenvalues in the right half plane increases by two so that there is a pair of pure imaginary
etgenvalues.
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k=0| Stable Nodes
V(1,A)) = 0 - —trA > 0
A V(LA) = 0 A detA > 0
k=1 | Turing Type Stationary Solution G99 >0
V(1,A;) =0 - —trd > 0
A V(1L Ax(um)) = 1 A detA(pum) < 0

Tab. 5.1: For two equations only a Turing type steady solution can bifurcate from the stable situation.

k=0| Stable Nodes
V(1,A1) = 0 —trA > 0
N V(A1:A3) =0 -~ N —cletA > 0
N V(l,Az) =0 N A2 > 0
k=1| Turing Type Stationary Solution | A23| <0
V(1,A) =0 —trA > 0
A V(A1:A3(,um)) =1 And A _CletA(,um) <0
A V(LA,) ~ 0 A A, > 0
or
V(];’Al) =0 —JEI'I4~ > 0
N V(AL A3(pm)) = 0 & A —detA(pm) < 0
A V(LA (pm) =1 A Dapm) <0
k=2 | Turing Type Periodic Solution |A23| >0
V(1,A)) =0 —trd > 0
AN V(LA (pm) =1 A Dopm) <0

Tab. 5.2: For three equations a diffusion-induced periodic solution is possible.
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With Orlando’s formula it is clear that the eigenvalue condition for the Hopf bifurcation
in a three variables system depends on the second Hurwitz determinant.

It is quite easy to see that it is impossible to change the sign of A, if every element on
the diagonal of A is negative and none of the subminors is negative. And with THEOREM
5.4 a change of sign of A, is also impossible if all diffusion coefficients are equal.

Under these assumptions &3 =detA, too, cannot change sign, that is, the Turing bifurca-
tion is also not possible.

In terms of o; and &; the Hurwitz determinants of A can be compared explicitly with
those of A (d; here abbreviates d;, since the equations refer to all m):

g1 = tI‘f} = a1 + a2 + as3
5’1 = trd = trd— (dl + d2 + d3)
oy = Y |Aij|l= (a11022 — a12021) + (a11a33 — ar3a31) + (as2a33 — aszase)

Gy =), ‘Aij‘: > |Aij| — di(age + ass — da) — da(arn + ass — ds) — ds(a11 + ase — dy)

g3 = detA = Q1122033 + A12Q23A31 + (13021032 — (33012021 — (22013031 — 011023032
g3 = detA = detA — dy|A23| — do|A13] — d3| Ar2|+
didaass + didsag + dedsary — didads

The terms of the second Hurwitz determinant Az(um,dl,dz,dg) which are not in Ay can
cause a change in sign.

Ao(ptm, di, da, ds) = [2d1dads + (d1)2(ds + ds) + (d2)2(dy + d3) + (d3)2(dy + da)] (m2)®
—[tr(A23)(d1)? + tr(A1s)(d2)? + tI‘(A12)(d3)2+
]

2tI‘A(d1d2 + d1d3 + d2d3) (um )
+[(|A12| + |A13| + tr(A23)trA)d; +

(|A12| + | A23| + tr(As)tr )d2+

(|A13| + |A23| + tr(Ai2)trA)ds] u

+ Aq
(5.3)

5.4 'Wave Bifurcation in Case of d; #0

The wave bifurcation cannot occur for systems with less than three equations. However,
even in the case of three equations, a rule like that in the case of two equations and
activator-inhibitor kinetic cannot be read off the Hurwitz determinant Ay_; = A, imme-
diately. In order to derive conditions on the kinetic system that allow a wave bifurcation,
consider some positive d; and a singular limit with ds — 0 and d; — 0. The formal limit
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5im Ao (i, dy, dz, ds) = Ay (pim, 1, 0,0)
d3—0

= —tr(A28)(d1pur?)? + (|Ar2] + |A13| + tr(A23)trA)dy i ? + Ao
(5.4)
results in a parabola Ay (pm,d1,0,0) =: Ay(dipt?) in dy. The following conditions for a

change in sign of Ay(diun,?) by the diffusion coefficient d; and the m®* spatial mode
imply wave bifurcation.

Conditions for Wave Bifurcation:
(C1) —trA>0
C2)  Ay=—trA(D_|Aij|)+detA>0
3) —detA>0
4) —tr(A23)>0
)
)

@)

Q

5) —(|Ai2|+|A13|+tr(A23)trA) >0
6 (|A12| + | A1s| +tr(A2s)trA)? + 4tr(A23) Ay >0

6/\6/\/-\

Remark 5.3 The conditions (C1) — (C3) guarantee a stable constant equilibrium of the
kinetic system. The normed parabola to be discussed is
1 (|A12| + |A13| + tr(A23)trA)
—tr(A23) tr(A23)

Ay
tr(A2s)

A2(d1,u7n2) = (dlﬂm2)2 - dl,umz -

This is the normed second Hurwitz determinant depending on the diffusion coefficient d;
and the m*™ spatial mode. (C4) is needed for the right opening of the parabola, (C5) is
needed for positive real parts of the roots and (C6) is sufficient for the existence of two
real roots vt >0. For illustration purposes see FIGURE 5.3 on page 58.

Now the second Hurwitz determinant becomes negative for dium? in the open interval
(v=,v") and this results in complex eigenvalues for the Jacobian A(im).

Note that all these conditions only concern the kinetic system.

Theorem 5.5 Let X be an open subset of a real Banach space E. Consider a system of
a parabolic and two ordinary differential equations and appropriate boundary conditions
such that the right-hand side is C*(X3 xRy, E3).

u, = B(uy,di) + g1(u1, ug, us3)
Uy, = ga(u1, g, us3) in Q x (0, T*) (5.5)
Uz, = gs (Ul, Uz, U3)

The spectrum of —B( - ,d;) is nonnegative, real, simple and discrete. Moreover, it depends
strictly monotone on the parameter di €R,.
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The kinetic system g:=(g1,92,93) has an asymptotically stable constant equilibrium E* =
(uf,u3,u}), i.e. (C1) — (C3) are satisfied for the linearization A|g~ of g, and B(uf,-)=0.

If the linearized kinetic system at the constant solution fulfills (C4) — (C6), then there is
a critical parameter d; with

Ay(dipum?) = 0 form

Ao(di®?) > 0 forl #m
for a single m € N, where 2 denotes the m' eigenvalue of —B. Furthermore,

(1) {ziw} are simple eigenvalues of A , where w >0,
(ii) there are no eigenvalues of the form ikw for k€Z\{£1} and

(iii) 8 Rep(dr)#0, where p(dy) is the unique continuation of the eigenvalue of A for
dy in a neighborhood of the critical d} satisfying p(d}) =iw,

and the SYSTEM (5.5) has a unique one-parameter family of noncritical nonconstant pe-
riodic orbits in an appropriate neighborhood; precisely for w:=(uy,us,u3), the minimal
period T and the bifurcation parameter dy it yields

(w(-),T(),di()) € C'((=&,6),V x Ry x Ry)

satisfying )
(u(0), 7(0), d:(0) = (B, =, d})

such that

v(s) = v(u(s))

is a noncritical nonconstant periodic orbit of SYSTEM (5.5) of period T(s) passing through
u(s)eV for 0<s<e.

Proof:

The local existence of a bifurcating periodic solution follows from the Hopf bifurcation
theorem in infinite dimensions of CRANDALL and RABINOWITZ [10] which can be found
in the APPENDIX A, THEOREM A.6. For a slightly different formulation which is more
coherent with the above notation, and a concrete stability criterion see THEOREM A.7.

The constant solution E* is a solution for all parameters d;. THEOREM 5.5 (i), i.e. the
purely imaginary simple eigenvalues, results from the appropriate signs of an infinite set
of Hurwitz determinants which satisfies the conditions (a), (b), and (c) of (5.2) for n=3
variables and for each value of the point spectrum. The purely imaginary eigenvalues
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are simple because of the assumption that the spectrum of —B only contains simple
eigenvalues. Furthermore, Ay(dju,%) =0 at the critical parameter only for a single
meN.

A, is positive for all modes, since a real positive spectrum of —B only diminishes trA
compared with an already negative trA of (C1).

It remains to prove that —detA(jm,d1,0,0)>0 (see FIGURE 5.2), which guarantees an
even number of eigenvalues with positive real part. Consider the following limit:

lim (—detA(um,dl,dz,dg,)) —: —detA(dipin?) = |Azs|dipin? — detA  (5.6)
430

If | A2s| is positive, then —detA(dp,,2) > —detA>0 for all d; and all m, so that there is
no change in sign of the determinant. The above conditions already imply that |A23| is
positive, and this is proved in the following lemma.

Lemma 5.1 Let A be such that (C1) — (C5) are fulfilled. Then |A23| is positive.

Proof:
(C5) = |Ai2| + |A13| + tr(A2s)trd < 0
(C1)(C4)

& |Ai2| + A3 < —tr(A2s)trd <0
= |Aw2[+[A13] <0

Assume |A23| <0, then

(C3)
<

(c2)
0 < trA(|A12|+|A13|+\A23|) < detd < 0

which is a contradiction. O

THEOREM 5.5 (ii), i.e. the nonresonance, follows from A;(d*,2)>0 for i= 1,2 3 and
all [#m such that the rest of the spectrum of the right-hand side of SYSTEM (5.5) is
bounded away from the imaginary axis.

In fact it even says more since Re (spec(;l)\{iiw}) < 0 which is a necessary condition

for supercritical bifurcation. Now the stability criterion of THEOREM A.7 reduces to the
evaluation of sgn(d).

THEOREM 5.5 (iii), i.e. the transversality condition of the Hopf theorem, follows from the
assumption of strictly monotone dependence of spec(—B) on the parameter d;.

The bifurcating periodic solution is nonconstant because the constant solution E* is
asymptotically stable. A certain mode m is destabilized when a pair of complex eigen-
values crosses the imaginary axis for critical dj. The uniqueness statement of THEOREM
A.7 now excludes a constant periodic solution in a neighborhood of (E*,T*,d}).

This completes the proof. [l
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Remark 5.4 Via cyclic changes of the indices i= 1,2,3 in (C4) — (C6), THEOREM
5.5 can be formulated for a spatial operator in the second or third equation.

As an example for an operator B(X X AE) on a subset X of a real Banach space E
and A CR, serves the Laplace operator on bounded domains Q) with Neumann boundary
conditions, multipied with a diffusion coefficient dy. This operator fulfills the assumptions
of the theorem and is used in the applications throughout CHAPTER 6 and CHAPTER 7.
Attention has to be paid on the shape of the domains for dimensions greater than two.
The destabilized mode might not be a simple eigenvalue of the operator.

The following figure illustrates the picking of a single mode that becomes unstable.

As(dipim?)

T

(m+1)2 dym

F1G. 5.3: The parabola Az(dl Lm?) selects a single mode of oscillating solutions when the kinetic system is
regularly perturbed with a diffusion operator in a single equation (here for the Laplace operator
on a one-dimensional domain).

For the wave bifurcation |A23| has to be positive. But since EQUATION (5.4) might have
no positive roots this is not sufficient. A simple computation shows that existence of
positive roots can only be achieved if (C5) and (C6) are satisfied.

Nevertheless the positivity of |A23| can be used as a first check whether wave bifurcation is
possible or not. A submatrix with only positive Hurwitz determinants (for a 2 x 2 matrix
that means negative trace and positive determinant) will be called stabilizing. There are
two different cases that can be distinguished for SYSTEM (5.5) at an asymptotically stable
constant solution:

Remark 5.5 If the constant steady solution satisfies (C1) — (C3) and |A23| <0 then there
15 a critical diffusion coefficent di for an appropriate mode m which causes a bifurcation
to a Turing type stationary solution. The submatriz is not stabilizing in this case.

A Turing type stationary solution can also be caused by a simultaneous change of sign of
detA(pm) and Ag(pm) (see TABLE 5.2, k=1). For negative trA it implies 3" |Aij|=0. In
the limit of dy=ds=0 the terms to become zero are —detA(dypm?) = —det A+ dy i, 2| A2s|
and S |A(dypim?)ij| = 3 | Aés| — dy i 2tr(A23). This means |A23| <0 and tr(Az2s)>0. Again
the submatriz is not stabilizing.
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If the constant steady solution satisfies (C1) — (C6), there are critical diffusion coefficents
di causing a Hopf bifurcation. Conditions (C4) and (C5) imply tr(A23) <0 and |A23|>0.
This submatriz is stabilizing.

The results of the computations on the stability at the equilibrium point can now be
summarized.

Remark 5.6 In a stable constant solution the sum Y |Aij| is positive. For wave bifurca-
tion at least one |Ajk| has to be negative to satisfy (C5). The spatial operator occurs in
the i or k™ equation. The submatriz in which no spatial operator occurs is stabilizing.

5.4.1 Estimation of Mode Selection

Further investigations of the wave bifurcation concern the biggest mode M that can be
isolated. For one-dimensional domains {2 and the Laplace operator, this wavenumber is
estimated by v+, the roots of Ay(dipum?) (see FIGURE 5.3). For all integers m less than
M, a bifurcation to a wave solution with the appropriate wavenumber can be arranged
either for shrinking or growing d;. But for wavenumbers greater than M, at least two
modes are within the unstable area. This does not mean that there is no such solution,
but it strongly depends on the initial data which solution will survive.

Lemma 5.2 The biggest wavenumber M for which only a single mode is destabilized in

with

a one space dimensional system can be estimated by p= =

vt—v
_ _ 1
o —1< M<pu + 5
where vE are the roots of the parabola Ay(dypm?) of THEOREM 5.5.
Proof: Fix the left root v~ at the M® mode with the scaling factor d;m>.
i M? = v (5.7)

Maximizing the scaling factor gives the following inequalities. EQUATION (5.8) is needed
to prevent getting a second mode in the unstable region, EQUATION (5.9) is introduced
to make the interval (v~ ,v1) bigger than the previous spacing between two eigenvalues.

vt—vT < dim*(M+1)?-M?) = din*(2M +1) (5.8)
i’ (M? — (M —1)?) = din®2M —1) < vF —v~ (5.9)

Estimation from above is done with EQUATION (5.7) and EQUATION (5.8).
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2M? _ 1 _2M+1
v dym? vt — v~
N 2M? v M < v~ o
oM +1 2M +1 1/+—1/—_N
1 1
= M--< M- - M i
2 oM+l o HF T SH Tty

For the estimation from below EQUATION (5.7) and EQUATION (5.9) are used.
2M -1 1 2M?

vt —v~ dim? 2w
2M? MQ2M-1)+M
= =M < M+1 T—-1< M
oM — 1 oM — 1 T MR T A TS
There are at most two integers within the bounds. It has to be checked if A, always

evaluates negative for both modes (then take the smaller one), or only for one of them.
U

= u <

5.4.2 Considerations on Stability

Once the maximal M is found, the critical der for which there is bifurcation to the
standing wave solution for shrinking d; <d;,, can be calculated easily. In the same
way a critical d; 24 is calculated for M —1, and there is a bifurcation to a time-periodic
solution for growing d; > d; M- The two possibilities correspond to the situations of either
touching the square number with the right wing or with the left wing of the parabola.
This yields the following sequence

o dyyy, < dyy, < diyg gy < iy, oo

and there is no mode destabilized within the open interval (d; M, ’dl(M—l)l)' So the mode
destabilization is well separated up to the mode with the maximal number which can be
estimated with LEMMA 5.2.

In contrast to the transcritical bifurcation the stability in case of a Hopf bifurcation has
to be derived from third derivatives of the vector field at the bifurcation point.
THEOREM A.7 gives a concrete stability criterion which tells whether there is supercritical
bifurcation or not. Only sgn(é) has to be determined since THEOREM 5.5 already implies

Re (spec([l)\{:l:iw}) < 0. If the right-hand side of SysTEM (5.5) is at least C3, then §

can be computed with the given formula. Note that neither 44w nor the third root of
X(;l), which is always negative, do depend on pu,,%, but the basis of the kernel N does.
Therefore sgn(é) might change for the same problem at each bifurcation point.
Nevertheless, straightforward integration in the neighborhood of a sequence of critical
bifurcation parameters reveal a picture as sketched in FIGURE 5.4, where all branches
appear supercritical.
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[
|

+—F =
0 d,  dy, di,, dy,, d,

F1G. 5.4: The branches of periodic solutions are sketched as maximal amplitude of the solution in an
appropriate norm versus the diffusion coeffcient d; as bifurcation parameter. The constant
solution E* is drawn as a solid line in case it is asymptotically stable, and as a dashed line if
it is destabilized. The mode destabilization is well separated up to the mode with the maximal
number that can be estimated with LEMMA 5.2.

5.5 Wave Bifurcation in Case of d; =dz7#d3s=0

Return to EQUATION (5.3) and now consider the case where d; =dy=d and d3=0. The
second Hurwitz determinant is

As(pim, d,d, d3) = [2d%ds + d?(d + d3) + d*(d + d3) + 2d5%d](pm?)?

—[d?(trA + as3) + ds’tr(A12)+
2(d? + 2dd;)trA](pum?)?

+[d(|Arz| + > | Aij| + (trA)? + azstrd)+
d3(|A13| + | A23| + (tr(A12))? + azstr(A12))]pm>

+ Ay

and for ds—0

Ao(pim,d,d,0) = 2(dpm?)*

—(dpm?)*(3trA + az3)

+(dpm?) (| Ar2] + 37 |Aij| + (trA)? + asstrA)
+A,

which is a cubic polynomial in d. It can be solved by Cardan’s formula, and for a negative
discriminant there are three real roots. Note that the leading coefficient is positive and
the value at d=0 is Ay >0. One of the roots of this cubic polynomial is always real and
negative. If the other two are complex or negative, no wave bifurcation will occur. But if
they are positive real roots, and if

—detA(tm, d,d,0) = —detA + dp,>(|A2s| + |A13]) — (d,um2)2a33 >0
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there will be a complex conjugate pair of eigenvalues of the full system crossing the
imaginary axis for a critical diffusion coefficient d*. In CHAPTER 6 there is an example
showing the desired linearization.
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6 First Examples for Wave Bifurcation

For the semiphenomenological model of CO oxidation on platinum, the basic spatio-
temporal solutions such as traveling waves, standing waves and target patterns, all have
been observed experimentally as well as numerically. Recently LEVINE and ZOU [34] ana-
lyzed the modulated standing wave pattern, a standing wave superposed to homogeneous
oscillations (see also CHAPTER 2). For the parameters in request, however, the homoge-
neous mode will always bifurcate first, as it would do for a two equations system. This is
due to the fact that at its stable fixed point this model is not able to fulfill the conditions
(C4) — (C6). It behaves like a two equations system to which it can be reduced as shown
in CHAPTER 3.

Therefore the models which are analyzed here are essentially three equations systems in so
far as the coupling of the kinetic system cannot be reduced to two equations by standard
methods.

6.1 Example for Both Limiting Cases

To give a first example consider the following system together with Neumann boundary
conditions.

u = diAu —eu + Kev + 2ew —KAUYW

1 1
b = dyAv +;(1+2€)u—(1+€)v+;(62+66+1)w —Auvw

w = dsAw +u — KU+ W —u?

It is a Zy-equivariant system having three fixed points. Obviously zero is one of them, and
it is asymptotically stable in the space of constant functions. Its linearization fulfills all
the conditions to get a wave bifurcation for d; #0 as well as d; =dy#0. The parameters
K, A do not occur in any of the symmetric functions of the characteristic polynomial, since
k is canceled down and A only occurs with higher order terms.

—€ KE 2e
A . 1 1 2 P — A 2
om0 = | Z(1+2) —(1+¢) —(2+6e+1) |, &=Az+o(z[)
K K
1 —K 1

Computing (C1) — (C3) proves that all eigenvalues of A have negative real parts.
—trA = 2 > 0
AQ = 82 > 0

—detA = 3¢ > 0
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6.1.1 The Case of d; #0

In the case of a diffusion term in a single equation the trace and determinant are decreased.
It remains to show that A, changes sign for a single mode m. The conditions (C4) — (C6)
cannot be satisfied for diffusion terms in the second or third equation. But in case of d; #0
and dy=d3=0, it yields —tr(A423)=e>0, and as a first check |A23|=>5e+¢? is positive.
Next (C5) evaluates to —e?+3¢ and (C6) is (¢ —3¢) —4e® which is positive for ¢ € (0,1).

—trA = 2e+ dypim> > 0
Ao(pm) = €24 dipm2(e? — 3¢) + (dipm2)’e < 0

—detA = 32 4 dyunm’(e? + 5¢) > 0
As indicated above, Ay(um) can become negative for 0<e <1 and v~ <dyum><v' with
1
vt = 5(3—61 (3—5)2—45>

(e.g. for £=0.01 it yields v* ={0.3348231-1072,2.9866518}), whereas the trA and detA
do not change their signs for any u,,. However, the constant zero is destabilized.
The system is implemented with the following set of parameters:

e =05, k=100, A = 2.0, and d; = 0.1

Initial conditions for the straightforward algorithm are chosen at random around the zero
solution with a maximal standard deviation of 0.001. As a result a first mode standing
wave establishes itself in a spatially one-dimensional setting.

Computations in two spatial dimensions on a square domain result in a standing wave of
the same mode. For illustration purposes see FIGURE 6.1. The zero solution is fixed in
the center of the square and an s-shaped zero line rotates around for each of the three
species.

6.1.2 The Case of dy =dy#d3=0

In the case of dj=dy#0 and d3=0, and for the same £=0.01, i.e. for the same kinetic
system as above, there are three real roots of Ay(pm,,d;,d;,0)=2d3+ (6 —1)d*+3e*d+
e2=0 with d:=d;u,,2. They can be computed to be about

{—0.010050631, 0.010597026, 0.4694536}.

The detA(pm,d1,dy,0) =3e2+d(2e+¢2) —d? is positive for d e (—0.009975,0.030075). So
there is an overlap for the diffusion parameter where As(um) is negative and detA re-
mains positive. Therefore one can imagine the wave bifurcation to hold for all intermediate
parameters, i.e. ds € (0,d;), so that THEOREM 5.5 holds (with additional hypotheses) for
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F1G. 6.1: The grid indicates the zero level in both pictures. On the left is shown the solution for the first
equation, which is quite similar in shape to the second equation. On the right is shown the
solution for the third equation. The color in both pictures indicates the third equation giving a
cyan color to the minimum and marking its maximum with light yellow.
An animated sequence now shows a rotating wave where the maximum of the first equation
(reddish lower right corner in the left picture) follows the maximum (yellow spot) of the third
equation.

two parabolic equations coupled with a single ordinary equation, too. These conditions
are quite ugly when extracted from Cardan’s formula and should be left to the computer.

Nevertheless, with the straightforward algorithm no standing wave could be detected
for d; =d,. Instead there always develops a steady nonconstant solution that in shape
strongly depends on the initial conditions. Presumably the wave bifurcation is no longer
supercritical and therefore the wave solution does not exist for the indicated diffusion
parameters.

6.2 Application to Autocatalytic Surface Reactions

The example of the previous section is constructed without an application in mind. The
following system of three equations has a background as an autocatalytic reaction-diffusion
system. It is derived with the help of stoichiometric network analysis (see EISWIRTH [11]).
It may be interpreted to describe a surface reaction enhanced by a reconstruction process
of the surface.

It has to be mentioned that the semi-phenomenological system of CHAPTER 2 is not of
the form to be able to fulfill the conditions for the wave bifurcation. Whenever the kinetic
parameters for the three variables system are chosen in a way which stabilizes a constant
solution, condition (C5) is violated. There are of course standing wave solutions for this
system as shown in CHAPTER 4. But it is not essential to argue with three equations.
This justifies once more the elimination of the oxygen equation.
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In the following network it is essential to have three equations. FIGURE 6.2 sketches a
process in which a species w depends quadratically on itself and on an additional species
v. While consuming two parts of w, there are four parts produced by the loop indicated
by the parameter py.

D3 Y41
€ J— U
w

Piiny

D2

Da v

F1G. 6.2: This stoichiometric network sketches an autocatalytic process. Reaction kinetic parameters are
written to the corresponding arrows which indicate the stoichiometry by the numbers of flags
and feathers.

This network gives rise to the following differential equations with kinetic parameters p;
to p4, assuming a diffusion matrix with diagonal entries d; to d3. The integer multiples
come from the stoichiometry of the chemical network, so that all parameters can first be
set identical one.

No flux boundary conditions on the cylinder 92 x (0,T] are considered.

v = diAu — pi, U — 2pu + 3prw

U = dyAv + pou — pgrw? in Q x (0, T]

w = d3Aw + pi,u— 3prw — psw + 2pgvw? + € (6.1)
0 0 0
—U = —V=_—Ww= on 9Q x (0, T]

Solving the system for constant equilibria yields a single solution that requires

3epy 3p1p2p3 €
U= ————"" v = w= —.

(P14 + 202)D3” (Ptyy + 202)€Ds’ D3
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Setting the parameters identical one yields an asymptotically stable equilibrium E*=
(u*,v*,w*)*=(1,1,1)*. This equilibrium does not change when the paramters p3 and € are
varied simultaneously such that ¢/ps=1.

The linearization at this point is

— (P, + 2p2) 0 3p1 -3 0 3
Al = D2 —p4(w*)2 —2pgvtw* = 1 -1 -2
Dty 2pa(w*)®  —3p1 — ps + dpgviw* 1 2 1—ps

with the following set of eigenvalues

1 1
{—3, —5(103— \/p32—4p3), —§(p3+\/p32—4p3)}

indicating an asymptotically stable oscillatory fixed point.
Now the paramters p3 and e are varied simultaneously for small values of ps.

A nonzero diffusion term in the v-equation can be ruled out as a source for the instability
by a first check whether the submatrix is stabilizing: |A13|=—3(2—p3) is negative for
p3 < 2.

Diffusion in the w-equation fails in principle for condition (C5), that is —(|A23|+|A13|+
tr(Ai2)trA) =8(1—ps) —17 which is negative.

For a nonzero diffusion coefficient d; the condition (C5) is —(|A12|+|A13|+tr(A23)trd) =
—p32—6ps+3 which is positive for positive p; < —3+2+/3.

To fulfill condition (C6) the parameter ps has to solve p3* —4p3® —6p3*> —36p3+9>0 and
this expression is positive for p; <0.23904883974. Note that the system gets singular for
p3 — 0. For values of p3 inbetween zero and its upper limit critical diffusion coefficients d;*
can be determined for each wavenumber up to the maximal wavenumber to be estimated
with LEMMA 5.2. The closer p3 gets to its upper limit, the bigger is this maximal number.
The conditions (C1) — (C6) are fulfilled for d; #0 and do=d3=0. If the mobility of a
single variable is considered as a source of a standing wave solution, only the u-species is
able to destabilize the stable constant solution.

Existence of the solution is guaranteed via the asymptotic stability of E*. This yields a
neighborhood of the fixed point that is positively invariant such that the reaction diffusion
system has a solution for all time if the initial data is within this neighborhood.

The numerical result of FIGURE 6.3 can be predicted.

Numerical Parameters

A sustained oscillation in space and time for the above model of an autocatalytic reaction
can also be verified numerically. The discretized system of ordinary differential equations
is solved with the LSODE package, using numerical estimates of the Jacobian matrix, and
relative and absolute error tolerances as in CHAPTER 4. The space discretization is 300
gridpoints on a unit interval. Time discretization is done implicitly.
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F1G. 6.3: The horizontal axis shows the temporal development, the vertical axis represents the spatial
domain. The w-solution is displayed in color from a minimum of light blue to a maximum of
light yellow. The asymptotically stable fixed point of the kinetic system is indicated in white.
One-dimensional spatially nonuniform initial data (top, time steps 1-100) evolves into a standing
wave pattern (bottom, time steps 4900-5000).

6.2.1 An Example from the Literature

ZHABOTINSKY et al. [46] also numerically show the phenomenon of wave bifurcation in
a three variables system modelling cubic autocatalysis. Their kinetic system is coupled
with the same simple diffusion terms and looks as follows:

u = diAu + m(—uv2 I L )
gt+u
v = dyAv + n(uv? —v +0b) in 2 x (0, T]

W = dsAw +u—w

—U=—V=_—Ww= on 9Q x (0, T]

The authors use the same solver with the same tolerances and discretization schemes.
They perform the simulations with zero diffusion coefficients in the first and second equa-
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tion. Other parameters are m =28, a=0.9, n=15.5, b=0.2, d3=1 and a length of the
interval 2 of L =20 units. The initial conditions are chosen to be the stationary con-
stant solution of approximately (u,v,w)=(1.1308,0.5787,1.1308) where only a single one
of the 300 gridpoints on the boundary of the domain is perturbed slightly. The standing
wave result with a wavenumber of twelve can be reproduced easily. For further numerical
experiments, they vary the length of the domain and the kinetic parameter m.

The same set of parameters as above but different initial data, as for instance a bigger
part of the interval on which the stationary solution is perturbed or initial data which
are perturbed randomly on every gridpoint in a neighborhood of the stationary solution,
lead to a standing wave with a wavenumber of eleven. Since d3=1 and a length of (2
of L=20 is equivalent to a diffusion coefficient d;=0.0025 and L=1, this result can be
interpreted with the help of FIGURE 6.4. The roots v* of the parabola of FIGURE 5.3 on
page 58 which is used to illustrate THEOREM 5.5 provide a left and right critical diffusion
coefficient for each mode. For the above system, the stationary solution is destabilized
for perturbations of wavenumber eight up to fifteen.

16 !
15 '
14
13 !
12 !

11

10

| | | | -
0.001 0.005 dg

F1G. 6.4: For SYSTEM (6.2) with parameters m =28, a=0.9, n=15.5, b=0.2 the roots of approximately
v~ =1.3389 and v+ =5.8545 give the above intervals of diffusion coefficients which destablize
the constant solution with respect to the mode with the indicated wavenumber. The dashed
line marks the diffusion coefficient ds=0.0025. The modes which are destablized range from
wavenumber eight to fifteen.

Increasing m slightly to a value of m=28.56 makes the roots v* move closer to each
other so that the picking of a mode is more selective. For this kinetic parameter value
the biggest wavenumber up to which the modes are well separated is fourteen (estimated
with LEMMA 5.2). For d3=0.0025 now only the standing wave of wavenumber twelve is
destabilized. For m even bigger than 28.566616, the wave bifurcation is not possible any
more. Decreasing m to a value less than 26.75 yields in a destabilization of also the zero
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mode, i.e. the constant solution itself is not stable any more.

Discussion

The parameter m serves as the one to be varied for the different numerical tests in the
paper of ZHABOTINSKY et al. [46]. With the help of the conditions for wave bifurcation of
CHAPTER 5 an interval of m € (26.75,28.567) is given for which standing wave solutions
can be expected.

The bigger m is, the more selective is the parabola, and the more sensitive the system
reacts on a change in the diffusion coefficient (or, equivalently, in the length of the do-
main). Changes in the initial data are not recognized by the final waveform as long as the
wavenumber is below the estimated maximal number and the perturbations are within
the wavelength.

For m nearer to the lower end of the interval the solutions depend even more on the
initial data. If m gets even smaller the space-independent Hopf bifurcation occurs as
well. Naturally, a straightforward integration of the initial value problem gives rise to
quite different solutions, as the described Standing Traveling Waves in the above paper.
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7 An Example from Biology

This three equations system is a nice example for wave bifurcation since the kinetic
part will not show periodic solutions for any positive parameters. So it is sure that the
system has no periodic solutions until a diffusion matrix with different coefficients for
each equation is introduced. The conditions for the wave bifurcation now indicate which
species has to have the biggest mobility.

7.1 A Model for Microbial Growth

The set-up of the kinetic system for growing cell cultures is derived from a chemostat
model. Assume the microbes (algae or bacteria) to grow in a thin layer on top of an
aggar (gel with nutrient) in a vessel while the nutrient is constantly supplied from be-
low. Let S:=S(z,t) be the concentration of the growth-limiting nutrient within the
layer. The dynamic is determined by the concentration of the fast growing (and therefore
fast consuming) cell population u:=u(z,t), and the slow growing cells v:=wv(z,t). The
concentrations are no longer constant but functions of space and time, since the model
additionally considers a diffusion term for the cell movement. S° is the concentration of
the limiting nutrient. For simplicity the dilution of the nutrient and the death rate of the
cells have the same constant rate D. But it is only for the analysis that this assumption
is required to have a conservation of mass equation. Computer algebra implementation
of the equations show that this can be considerably weakened: Dilution and death rate
can have different values without changing the qualitative behavior of the solution set.
In the standard Monod model the specific growth rate f depends on the amount of
supplied nutrient. It is modeled by a Michaelis-Menten term f(S)=mS/(a+S), where
m is the maximum growth rate and a is the half-saturation constant.

Dividing the cell culture into two phases that have different metabolisms gives rise to
two different growth rates f1(S) and f»(S). Again they may be considered to be of the
form myS/(a1+S) and msS/(as+S), respectively. These terms are used for numerical
investigations, although for the analysis of the model, f; as well as f; can be more general
functions (see [27] and the references therein).

Assume f;, i= 1,2 to be monotone increasing functions that saturate

(1) fi are C® functions on an interval containing [0,00).
(2) fi(0)=0, fi(S)—=mi<oo as S—oo, mi>D>ms.
(3) fi(5)>0 on [0,00).

The change in metabolism is modeled by nonnegative functions «(S) and 3(S), and it is
sufficient if these functions are continuous and piecewise differentiable. It can be assumed
that a(S)=0 up to a threshold s; and that « is nondecreasing (a’(S)>0) for S>s;. In
contrast, 4 is nonincreasing (5'(S) <0) for 0<.S <s2 and can be considered §(S)=0 for
S >s9. Let a and S be piecewise linear functions of the form:
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0 0< 8 < s
a(S) = Kl(S— 81) fOT' S1 S S < 81+ €1
Kiegy s1+e < S
Kseq 0< 85 < 89—¢9
B(S) = ¢ Ks(S—s2) for s3—e3 <85 < s
0 So S S

with K; >0 and K5 >0 positive constants.

0 0.2 04 S 0.6 0.8 1

F1G. 7.1: The functions «a(S), B(S), f1(S), and f2(S) are positive functions depending on the amount
of nutrient S. The piecewise linear functions a and S model the exchange between both cell
populations and are well separated by a gap in S, where both functions are identically zero.

First assume that any of the variables may diffuse, but with different nonnegative diffusion
coefficients d;, 1= 1, 2,3. The topmost layer of the aggar in the vessel is considered to
be a one or at most two-dimensional domain {2 with homogeneous Neumann, that is 'no
flux’, boundary conditions. The outer normal at the (smooth and convex) boundary of
the domain is denoted by n.

This leads to the following model:
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oS

Nutrient] > = diAS + (= S)D - fi(S)u— fo(S)o

[Phase 1] Z—TZ = dyAu + [f1(S)—D—pB(S)u+a(S)y inQx(0,00)

[Phase 2] % = d3Av + [f2(S)— D — a(S)v+ B(S)u
3Sziuzivz on 99 x (0, 00)

(7.1)

with initial data (Sp,ug,v) in C(£2).
Existence of the solution for all time ¢ >0 results from bounded invariant rectangles, with
the vector field of the kinetic equations at the boundary pointing strictly inwards (see for
example SMOLLER [44], Chapter 14).
This model is biologically reasonable for the set of parameters consisting of positive con-
stants. The analysis should be carried out for the whole range of positive parameters. The

mathematical method of CHAPTER 5 can now be applied in SECTION 7.1.1 and SECTION
7.1.2.

7.1.1 Transient Oscillations for Nongrowing Second Phase

Requirements for the wave bifurcation include at least one stablizing and one destabilizing
two-dimensional submatrix of the kinetic system. The spatial operator appears exactly
in the equation that does not belong to the stabilizing submatrix.

Here this result is applied to a simpler model than SYSTEM (7.1) insofar as it lacks a
growth rate function for the cells of the second phase.

% = dAS + (S°—S)D— f(S)u

2_1‘ — dAu + [f(S)— D — B(S)u+a(S)y (7.2)
ov

5 = BAv + [ —D—a(S)lv+B(S)

Investigating the kinetic system means neglecting any explicit spatial dependency, looking
at a single point in the vessel without exchange with the neighborhood, or at a mean value
in a stirred vessel (see [27] for a detailed analysis which is sketched in the following). It is
easy to see that the phase space R? is positively invariant under the solution map of the
kinetic system. Moreover it can be shown that the simplex {(S,u,v) € R%|S+u+v<S°}
is positively invariant. Introducing a variable z(t) = S(t) +u(t) +v(¢) yields the differential
equation 2’ =(S%—2)D; hence z(t) — S as t— oco.
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The set of equilibrium points and their local (and global) stability behavior is known.
E®=(5%,0,0) is an equilibrium point for all parameter values, and is globally stable in
case of being the only fixed point of the system. E° becomes a saddle point as soon as a
second equilibrium point comes into play. This second point is either E*=(S%,5%—5%,0)
or E*=(S*u*v*) that now is locally stable. A Poincaré-Bendixson argument together
with Markus’ theorem (see in the appendix THEOREM A.l, and for the application of
the argument see 7.1.2) state that there is no stable limit cycle and all trajectories are
globally attracted by this second equilibrium except those on the boundary of the phase
space.

The coexistence state of both cell populations in a stirred chemostat E* is the only
relevant equilibrium from which spatially nonconstant periodic solutions (standing waves)
may bifurcate.

The Jacobian A at the stable equilibrium E*=(S* u*,v*) is given by

—D — flu* —f(S%) 0
Alg« = | (f'=B8)u* f(S*)— D - B(S*) a(S*)
Blu* — a'v* B(S*) —D — a(S%)

where (-)' denotes Js(-) at E*. Since E* is an equilibrium point, and together with the
conservation law S*+u*+v*=S%, this yields the following relations:

(u*+v*)D = (8°—8*)D = f(S*)u* = v*D = (f(S*)— D)u*
[£(5*) = D = B(S7)u" = —a(S")v"
[-D —a(S7)lv" = —B(S")u’

As a consequence, and since v*#0, |A23| =0 for all parameter values.

[A2s| = [f(5") =D = B(S)][=D — a(5")] — a(57)B(57)
= (£(57) = D)[=D — a(5")] + B(S")D
v*D(=B(5"))

v

+B(S*)D =0
Next it can be deduced that |Ai2| >0 for all parameter values.

|Ar2| = (=D — f/(S")u")(£(S") — D = B(S™)) + f(S*)(f'(S") = B'(S™))u" > 0

7

<0 _ *\ ¥ >0
70‘(5* LA
Assuming f to be a nondecreasing function and « to be positive, |A13| is always positive.
There is no wave bifurcation possible for any positive value of diffusion coefficients. And
there also is no Turing instability since there is no activator or destabilizing submatrix
even in a single equation.
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As a conclusion, this model will not exhibit any nontransient spatial structure, neither
stationary nor periodic, which bifurcates from a constant solution. Numerical tests for
various initial conditions and parameters have shown that there is no evidence for any
spontaneous bifurcation away from constant solutions.

7.1.2 Sustained Oscillations

The question now is, what is required for the model to be able to also describe sustained
spatial structure of the solution? ROVINSKY, MENZINGER [42] analyze a three variables
system with no activator submatrix but introduce a flow-induced instability for spatial
effects. Since there is no transport by flow in the vessel, this idea cannot be used as an
explanation.

Hence the destabilization should be inherent in the dynamics. This means that there
should be a destabilizing submatrix (see REMARK 5.6). Any entry on the trace of the
Jacobian is nonpositive and there is no biological reason why this should be altered. This
means that there is no activator equation. Moreover, all two-dimensional submatrices
have negative trace. Destabilizing two-dimensional submatrices therefore have to have
negative determinants.

The model should be changed in a way to exhibit negative subdeterminants, but still
biologically reasonable with growth rate functions that are positive as well as increasing,
and with positive parameters.

The slope of 8 in E* can possibly make |Ai2| negative. Consider a z-shaped relation
instead of a piecewise linear function such that E* does not change its position but
B'(S*)>0. Since a and B cannot be both nonzero, it follows that a(S*)=0 in this case.
Then this change of the slope of 5 additionally affects the stability of £*, because —detA=
—(—D)|A12| <0. A negative subdeterminant yields a positive determinant and an essential
condition, namely the stability of the equilibrium, is violated.

Slow Growing Second Phase

In SECTION 7.1.1 there is no growth rate function for the cells of the second phase, making
some of the computations a bit easier. In fact introducing a positive growth rate for this
phase, too, yields the possibility of negative |A13| without changing any of the qualitative
results yet known about the chemostat model. SYSTEM (7.3) is the kinetic part of SYSTEM
(7.1) and can be analyzed with the same methods as sketched in the previous section.
This kinetic model came up in discussions with Betty Tang in 1992 during her visit in
Heidelberg.
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s 0

- = (S° = 8)D — f1(S)u — f2(S)v

Z—Z‘ = [/i(8) = D = B(S)lu+ a(S)v 73)
ov

5 = [(S)=D—a(S)v+pB(S)u

Note that introducing a variable z(t)=S(t)+u(t)+wv(t) yields the differential equation
2'=(5°—2)D; hence z(t)—S° as t— oo. There are at most two equilibrium points which
are called E° and either E¥, if the latter is a pure fast growing cell culture, or E*, if it
is a coexistence state.

They are found when solving the right-hand side of SYSTEM (7.3) to be zero. This is
equivalent to solving the following equations using the conservation law. Looking mainly
for the coexistence state, it is the solution of

(S°—=8)D — f1(S)(S° =S —v) — fo(S)v = 0
(f2(8) =D —a(S)v+ B(S)(S* =S —v) = 0
with v* > 0. Eliminating v from the equations yields

CALES LI
D + B(S) — f2(S)

which then can be solved for S*. Since S°>S*, this is equivalent to solving H(S*)=0
with

(s° - s>(<D _A(S) +

(D — £f2(8))(D + B(S) — f1(S5))
H(S) := D+ B(8) — f2(5)
D — f1(S) if §>s5 (< B(S)=0).

if 0< S < 89

To avoid any unnecessary difficulties, in the following always assume f5(S) < D. This also
excludes the case that S* > s, as a by-product, because for nonzero v* and 3(S*)=0, the
term f5(S)— D —a(S) has to be zero to solve the equation, and that is not possible.
The uniqueness of S* (if it exists) is a consequence of the monotonicity of D+ 3(S)—
f(S).

Again the set of equilibrium points consists of either solely E°=(S5°,0,0), or {E° E“},
or {E° E*}, respectively. E° is globally stable as long as it is the only attractor of the
system. It becomes a saddle point when a second equilibrium occurs. In general the
Jacobian is

=D — fiu* — fo* —f1(S*) —f2(5)
A=\ (fi = B)u*+av* f1(S*)—D—B(S*) a(S*)
(fs —a)v* + Blu” B(S*) f2(S*) = D — a(S7)
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and evaluated at E° it yields

-D ~f1(8%) ~fa(S°)
Algo = | 0 £(S%) — D - B(SY) a(S°)
0 B(SY) £2(8%) — D — a(8°)

The functions a and S cannot be both nonzero, so in either case (=0 or 5=0) the
eigenvalues of E® are just the entries on the diagonal

{-D, f1(8°) = D —B(S°), £2(S°) — D — a(S)}.

If there exists either E* or E* then f;(S%) — D —3(S°) is positive. This is because in either
case D+(S)— f1(S)=0 can be solved for S*<S°. For E* it follows that 8(S*)=0, for
E* it follows that 3(S*)#0. Since 3 is nonincreasing and f; is strictly increasing it yields

D+p(8°) < D+B(S") = f(S") < f(S")

and E° has one positive eigenvalue.
Now concentrate on E* and its asymptotic stability. Therefore the symmetric functions
are computed from the Jacobian at E* where a(S*)=0.

—D - fiu' = fiv* —fi(§7)  —fa(S7)
B = (fi = B 0 0
é’l)* -I—B'u* B(S*) fz(S*) - D

It is easy to see that trA <0, ) |Aij| >0, and detA<0. In detail

A

|A23] = 0
A = RSV - B > 0
[As| = (=D — fiu" — fu")(£2(57) = D) + fo(S")(fov" + §'v)

~—~
<0)

and in the sum Y| Aij| the only negative term f5(S*)8'u* is compensated by f1(S*)(—5"u*)
of |A12|. Finally every term in the determinant is negative

detd = —fo(S7)(fL ~ B B(S7) — (~H(S*)(fi — B’ ((57) - D)) < 0.

Therefore E* is always a stable equilibrium point, if —trA>|Aij| > —det A, that is (C3).
Since the computation now involves too many terms, there is an easier way to derive the
asymptotic stability of E* as a by-product of the next paragraph.
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Asymptotic Behavior

The qualitative behavior of SYSTEM (7.3) can be deduced from a planar autonomous
system, so that any kind of chaotic behavior can be excluded. Moreover, limit cycles can
be excluded by a Poincaré-Bendixson argument. The idea is as follows: SYSTEM (7.3) is
equivalent to a nonautonomous system

05 L (8" 8)D— fu(S)u— £(S)(x(t) — S — )
gt (7.4)
5 = LA(S) =D =B(S)u+a(S)(=(t) ~ S~ u)

where z(t) is the solution of 2'=(S%—2)D. Since z2(t)—S° as t— 00, SYSTEM (7.4) is
asymptotically autonomous, with SYSTEM (7.5) being the limit autonomous system.

%~ R(Su) = (8-8)D - f(S)u- £(S)(S°— 5 — )
gi (7.5)
= = RS = [i(5)-D-B(S)u+alS)S — S —u)

SYSTEM (7.5) is analyzed first. The triangular region A:={(S,u) €R%|S+u<S°} is
positively invariant. Equilibrium points are solely E°=(S°0) or {E’O,E‘“} or {E’O,E‘*}
with E¥= (5% 5%~ S%) on the boundary of A and E* inside.

Next it can be proven that E° is a saddle whenever a second equilibrium exists. Therefore
compute the Jacobian

J:( —D — flu* — f5(S° = $* —u*) + f»(S”) —f1(S*) + f2(S") )
(fi — o' = B +a/(S° = 5" —u) —a(S") fi(S") —a(S*) - B(S") - D
and evaluate it at E°:
~D+ £2(8°) —f1(8°) + £2(5°)
—a(8%)  fi(S°) —a(S%) - B(S°) - D

J|go =

In case of a(S%) =0 the eigenvalues are the entries on the diagonal. Since « is nonde-
creasing, a(S*) =0 in this case, so that the same estimate holds as in the case of SYSTEM
(7.3), and the second entry on the diagonal is positive.

D +B(S°) < D+B(S) = (S*) < fi(S°).

In case of a(S%)#0 it follows that 5(5%) =0 and the eigenvalues compute to

Mo = =D+ 5(fi — fo—a) & 0 \/f 4 2afi + fufs — 30 + 7 + 3
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If f,=0 these are the eigenvalues already given in [27], namely {—D+ f;,—D—a} and it
is obvious that the first one is positive. However, it only grows as long as 2f; —6a+ fo >0
because the expression under the square root is

(fi+a)+ fa2fi —6a+ fo) > (fi + @)

and the positive eigenvalue only increases when introducing a positive fs.

The eigenvector of the stable manifold of E° does not intersect the triangular region and
the positive invariance guarantees that the w-limit set of this region is either the other
equilibrium or the union of the point and limit cycle(s).

By a Poincaré-Bendixson argument, the case of a limit cycle can be excluded. In short,
any limit cycle of a planar system contains an equilibrium point of opposite asymptotic
stability properties inside. Because of the positive invariance of the triangular region
a limit cycle of SYSTEM (7.5) has to lie around the inner equilibrium E*. Moreover,
any limit cycle, if it exists, has to be stable. This can be shown when evaluating the
divergence of the vector field along a periodic solution ¢(t) = (S(t),u(t)) of SYSTEM (7.5)

with ¢(0)=¢(T), and T >0 as the minimal period. The second equation of this system
Ou—a(S*—S—u)

can be rewritten as fi—D—[f= , and integration by time is always

negative. ’
/0 <8F1£(t)) +8Fzéi(t>)> i o= - /0 (D f(54))) dt
B / (A(S®u) + BSOS - S(t) - u(t))) dt
Ta(S(t))(S° - S(1)) u(T)
_ /0 o) dt logu(o)

< 0

If £* is asymptotically stable, no limit cycle can occur, since at least one unstable cycle
has to be inside A. To see the asymptotic stability of E* first realize that a(S*)=0.
Assuming a(S*)#0 it follows that 5(S*)=0 and from F(S,u)=0 it follows (f; —D)u=
—a(9)(S%—S —u). This leads to a contradiction when solving F;(S,u)=0

(S° =S —u)D+uD — fiu— fo(S* =S —u) =0
& ~(fi = D)u = (fo = D)(S° — S — u)

since f;—D cannot be negative and positive. So f; =D and a(S*)=0.

Knowing that a(S*)=0 (but in fact 3(S*)#0 and f,(S*)—B(S*)—D=0), it is easy to
verify the stability of E*, since J|z. has negative trace and positive determinant.

Now Markus’ theorem (see in the appendix THEOREM A.1) can be applied showing im-
mediately that every trajectory of the nonautonomous system with initial value inside
A asymptotically approaches E*. Finally all trajectories of SYSTEM (7.3) approach an
equilibrium point E°, E* or E* since it is equivalent to the nonautonomous system as
can be seen with the help of the conservation law.
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Requirements for Wave Bifurcation

There is no difference in the global behavior of the solution map of a three variables
chemostat model with or without a growth rate function f5(S) as can be seen from the
study of the asymptotic behavior of SYSTEM (7.3). But the Jacobian at E* now has
a destabilizing two-dimensional submatrix. Recall that |A13| includes a negative term,
namely SB'u*. Using the computer algebra program Maple gave a first hint that there
exists a stable equilibrium point E* with a negative |A13|. Since |Ai2| remains positive
for all parameter values, applying REMARK 5.6 identifies the third variable to be the
diffusive species. Recall the formal limit (EQUATION (5.4)) but with the nonzero diffusion
coeflicient in the third variable.

Ao(ttrm,0,0,d3) = —tr(A12)(dspm?)? + (|A1s| + |A2s| + tr(A12)trA)dspm,? + Ay

With the appropriate cyclic changes the requirements for the kinetic system are as follows:

(C4) —tr(A12)>0
(C5)  —(|A13|+|A23|+tr(A12))trAd)>0
(C6)  (|A1s|+|A2s|+tr(A12)trA)>+4tr(A12) Ay >0

Then it is possible that the parabola is negative for some ds, that is Ag(dspm?) <0. Spatial
inhomogeneities in the initial conditions now give rise to time-periodic nonconstant solu-
tions such as standing waves. The solution branches for the various spatial wavelengths
bifurcate from the stable constant solution for critical diffusion parameters that can be
determined by LEMMA 5.2. So the system may have two (or more) stable attractors,
namely a constant steady state and a nonconstant time-periodic solution.

Steady State Turing Patterns

The second variable has to be the diffusive species for steady nonconstant solutions as
can be seen from EQUATION (5.6) adapted to the case of diffusion in the second variable.

—det A(fim, 0, dg, 0) = |A13|dapim? — detA

Again this limit can be negative for some dyu,,. In this case the spatial inhomogeneities
of the initial conditions give rise to patches where either phase 1 or phase 2 of the cell
culture predominates.

Recall the case of a two variables activator-inhibitor system, where (c3) guarantees the
existence of an activator, but the inhibitor has to diffuse faster. It can be observed that
for three variables and in the formal limit with only one nonzero diffusion coefficient,
the now two-dimensional submatrix is a destabilizing activator system and the remaining
inhibitor equation includes the spatial operator.
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7.2 Computational Results

A sustained oscillation in space and time for SYSTEM (7.1) can also be verified numerically.
First of all the stable equilibrium point E* has to be detected. For the following set of
parameters

S =1.0, D =05, m =5.0, my = 0.5, a; = 1.5, ap = 0.01,
K; =200, Ky = 33.5, 51 = 0.5, s, = 0.2, &1 = 0.02, e, = 0.04

the equilibrium point (S*,u*,v*)a2(0.19755,0.18241,0.62003) satisfies (C1) — (C3) and
is therefore an asymptotically stable constant solution. The conditions (C4) — (C6) are
also fulfilled for these parameters. With LEMMA 5.2 the maximal wavenumber can be
estimated to be either seven or eight. Critical diffusion coefficients for the seventh mode
are about d3, =0.001514 and d3, =0.0018998 and for the eighth mode d3, =0.001159
and dz, =0.001455. The destabilization of the ninth and tenth mode overlap, since the
diffusion coefficient lies in ds, € (0.000917,0.001149) and d3,, € (0.000742,0.000931), re-
spectively.

The discretized system of ordinary differential equations is solved with the LSODE pack-
age, using numerical estimates of Jacobian matrix and the same relative and absolute
error tolerances as in the previous computations. Time discretization is done implicitly
with a maximal step size of t=0.01. With the above considerations a diffusion coefficient
d3=0.001 destabilizes the ninth mode but not yet the tenth. To guarantee the spatial
step size to be of the appropriate order of magnitude, i.e. h?2~t, the space discretization
is 300 gridpoints on a unit interval, so h?=ds~*(300)~2~0.01.

The initial data is taken close to E* with an inhomogeneous perturbation within the
spatial wavelength and an amplitude of approximately 0.01 as a single peak in each
equation at the same place but arbitrarily located on the grid. Homogeneous Neumann
conditions serve as boundary conditions.

It can be observed that the small initial peak grows to a peak of considerable height before
the diffusion broadens it. This maximal amplitude is used for scaling purposes over the
whole time scale. The wave pattern travels to the boundary, is reflected and decreases in
amplitude. But finally, when the predicted stable pattern is approximately reached, the
waves grow again in amplitude. The computed result shows the predicted standing wave
pattern of wavenumber 9 (see FIGURE 7.2).

Qualitatively the same attractor results from randomly disturbed initial data having mean
value at the constant solution E*.

Discussion

The modified Monod model of [27] turns out to be very robust against changes that allow
for spatially nonuniform perturbations. The local and global solution set cannot be altered
in their asymptotic behavior although the transient growth dynamics gains complexity.

The standing wave solution will not be there until the quiescent cells have a growth rate
modeled by a positive increasing function f»(S). Now the two-dimensional submatrix of



82 CHAPTER 7. AN EXAMPLE FROM BIOLOGY

the Jacobian consisting of the derivatives of nutrient and of these slow growing cells is
destabilizing. Adding a diffusive term to this third equation of cells of phase 2 folds up
a periodic nonconstant solution. For the vessel, no flux boundary conditions might be
most appropriate, so the initial wave gets reflected at the boundary and a standing wave
solution is established.

Numerically the only asymptotically (or orbitally) stable solutions to be found are the
constant E* and this standing wave solution. If the initial data stimulates a wavelength
bigger than the predicted one, the smoothening effect of the diffusion is responsible for
the constant solution E* which is asymptotically attractive.

Note here that without diffusion no such periodic solution exists. That means stirring the
reactor will always lead to a constant steady solution of either no surviving cells, a pure
fast growing cell culture, or a coexistence state.

If the experiment shows sustained spatio-temporal oscillations, the mathematical model
should contain a growth rate function smaller than the death rate D for the cells of the
second phase. These cells should have the property to diffuse through the medium (gel)
in the vessel. The result can be interpreted in the way that the cells do not only change
their metabolism but also change their mobility for example by shrinking to a size that
allows for diffusion, whereas the fast growing cells stick to their places and are immobile.
If the experiment shows a patchiness, the same mathematical model can be used but here
the fast growing cells should have the greater mobility.

To model transient oscillations, there is the need of separating the cells into active and
quiescent ones. For sustained oscillations it is now required that the cells of phase 2,
which have the smaller growth rate, can diffuse. This is sufficient for a stable standing
wave that will disappear again in case the vessel is stirred.
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FIG. 7.2: The temporal evolution of a one-dimensional spatially nonuniform initial data (above, time steps
1-100) results in a standing wave pattern (below, time steps 4900-5000). The concentration of
slow growing but mobile cells is mapped in color to the profile of fast growing and immobile
cells. The value for the constant solution of slow growing cells v* is marked with dark color (see

arrow).
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A Theorems

The theorems which are used in the argumentation without being essential to the proofs
in the various contexts are listed here. For their proofs see the papers cited below.

A.1 Nonautonomous Systems

For a comparison of the asymptotic behavior of the solutions of a nonautonomous differ-
ential system to critical points and periodic solutions of a limiting autonomous system
the following definition and theorem are used.

Definition A.1 Let S:i; = fi(z;,t) be a real first order nonautonomous ordinary dif-
ferential system, and let S :&; = fi(x,t) be an autonomous system for each z €6 CR"
open. S is asymptotic to So (S— Sx) if for each compact set K C6 and each €>0
there is a T =T (K,e) >ty such that |fi(z,t)— fi(z)| <e forall i=1,---,n, all z€ K and
all t>T.

Theorem A.1 (Markus) Let S— Sy in 0 and let P be a critical point of Se. Assume
that the variational equation of Sy based on P has characteristic values with negative real
parts. Then there is a neighborhood N of P and a time T such that S, =P for every
solution S(t) of S intersecting N at a time later than T.

See the Contributions to the Theory of Nonlinear Oscillations by MARKUS [36].

A.1.1 Perturbation of Planar Homoclinic Orbits

Let 2= f(z) be a Hamiltonian vector field defined on (a subset of) R? and H(z) its
Hamilton function. Let eg(z,t,A), A€ R be a small parameterized perturbation that is
periodic in t. The following conditions hold for the unperturbed system (e=0):

(1) The system possesses a homoclinic orbit ¢°(¢) to a hyperbolic saddle point.

(2) Let T°={¢"(#)|te R}U{po}. The interior of I'? is filled with a continuous family of
periodic orbits ¢*(t), a € (—1,0). In other words, for d(z,T'°):=inf,cro |z —g| it yields
limyosupser d(g®(t),['?) =0.

(3) Let ho=H(g*(t)) and T, be the period of ¢*(¢). Then T, is a differentiable function
of hy and dT,/dh, >0 inside T'°.

Lemma A.1 For ¢ sufficiently small, the perturbed system has a unique hyperbolic pe-
riodic orbit v2(t)=q°(t)+O(e). Correspondingly, the Poincaré map P has a unique
hyperbolic saddle point.
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Definition A.2 The Melnikov function is defined as

M(tg, A) = /_oo (@t —t0)) A g(d’(t — o), 8, A) dt

o0

for a time as well as parameter dependent perturbation g(x,t,\). If g is not explicitly time
dependent, this reduces to

o0

M) = [ 1@O) Al ON) de = [ G100 = nV) dr

—0o0 —0o0

Theorem A.2 Consider the parameterized family == f(z)+eg(z,t,A), A€ R with the
assumptions above. If the Melnikov function M(ty,\) has simple zeros independent of ¢,
then, for € sufficiently small, the unstable and the stable manifold of the perturbed saddle
point p® of T, i.e. W¥(p¥) and W*(p%), intersect transversely. If M(ty,\) remains
away from zero then W*(p)NW*(plo)=0. If the Melnikov function is not explicitly time
dependent and M =0, then the homoclinic orbit is preserved in the perturbed system.

For a brief overview of Melnikov Theory see for instance GUCKENHEIMER, HOLMES [19].

A.2 Normal Forms

The idea of normal forms is to transform a system such that it finally has as few nonzero
terms as possible. There is a formal way to proceed in successive steps described in
the proof of the following theorem. The procedure is by no means unique since the
complementary space G; can be spanned by different basis vectors.

Theorem A.3 (Poincaré-Birkhoff Normal Form Theorem) Let 4= f(u) be a sys-
tem with

f(0) =0
Df(0)u =L
Let J, be the space of homogeneous polynomials of degree k with F, =ad L(Hy) P Gg.
Then there exists a polynomial change of coordinates of degree k such that the system
4= f(u) then has the form
0= g(v) = gW(©) + 9P () + -+ g7 () + o(|v]")

with L=gW(v) and g®)(v)€ Gy for 2<k<r.

For a detailed proof see GOLUBITSKY, STEWART, SCHAEFFER [21], p. 285.
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A.3 Bifurcation Theory

Most of the bifurcation problems can to some extend be reduced to a finite dimensional
setting by projection methods. So for example the Hopf theorem of SECTION A.3.2 is
an extension for the application in the theory of semilinear parabolic operators (see also
HENRY [22]).

The idea of bifurcation to steady states or periodic solutions is already contained in the
finite dimensional case. It has to deal with the spectrum of the linearization of the right-
hand side of a system of differential equations. If such an eigenvalue is a simple real
zero this is a necessary condition for a bifurcation to a steady state solution. Depending
on the codimension of the problem (that is the number of parameters which are needed
to reveal the complete dynamical behavior in a neighborhood of the bifurcation point,
see for instance GOLUBITSKY, SCHAEFFER [20]) this can be a limit point, a transient
bifurcation, a hysteresis point or a pitch fork, just to mention some of the possibilities
which arise for low (especially finite) codimension.

A simple pure imaginary eigenvalue in the linearization of a system of differential equations
over the real field occurs together with its complex conjugate. If it crosses the imaginary
axis transversally when varying the bifurcation parameter, and if there is no resonance
(i.e. no integer multiple of this eigenvalue lies in the spectrum), there is bifucation to a
time periodic solution. This is the so called Hopf bifurcation.

It can be subcritical, which means that the bifurcating periodic solution is unstable, or
supercritical, that is when the bifurcating solution is stable. This can be decided on a
sign condition (see THEOREM A.7).

In the case that the sign condition fails, there is no exchange of asymptotic stability
between the constant and the periodic solution. This can be an indicator that there
exists a coordinate change such that the Ljapunov Center THEOREM A.4 can be applied.

A.3.1 Bifurcation in Finite Dimensions

Theorem A.4 (Ljapunov Center Theorem) Let U CR* be open and H € C*(U,R),
k>3 be a Hamilton function. Then H':=DH is the gradient and H":= D?H the
Hessian of H, and zy 1s a critical point of H. Let iw for w>0 be a simple eigenvalue of
JH"(2) with J€L(R™xR"™) the symplectic normal form, and

spec(JH"(z)) NiwZ = {Fiw}.

Then the Hamaltonian system
z = JH'(2)
possesses a one parametric set of noncritical periodic orbits {y(s)|0<s<e} in a neigh-

borhood of zy.
That means there are C*=2 functions

z2(*) : (—e,e) = U, T():(—¢,6) = Ry
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with

2(0) = 20 and T(0) = 27/w,
such that y(s) :=7(2(s)) for 0<|s|<e is a noncritical T(s) periodic orbit through z(s) € U.
For 0< sy <ss the orbits ¥(s1) #v(s2), and in a neighborhood of zy every periodic orbit
belongs to the family {y(s)|0<s<e}.

The following theorem and THEOREM A.7 give concrete formulas for the stability of
periodic orbits either bifurcating from a homoclinic orbit or from a steady state.

Theorem A.5 (Stability Formula in Case of a Homoclinic Orbit) Consider a sys-
tem of differential equations £ = f(z,)\); z€R2, A€R, such that the following conditions
hold:

(1) When A= M, there is a hyperbolic saddle point py and a homoclinic orbit (saddle-
loop) o CW*¥(po) NW*(po). Let q#po be a point on 7.

(2) Let M be a one-dimensional transversal section to vy at q. Let I=[Xg—e,Ao+¢]
be an interval in parameter space. As A varies, let py=p(\) be the curve of saddle
points with p(Ao)=po, and let u(\), s(\) be smooth curves in R2xR contained in
(M xI)NW*(py) and (M xI)NW*(py). Assume (d/dX)(u(X)—s(X))#0 at A= X,.

(3) For A=\, tr[Df(po)] <0 (resp. >0).

Then there is a family T' of stable (resp. unstable, depending on sgn(tr[Df(po)])) periodic
orbits in (z,\)-space for the systems &= f(x,\), whose closure contains yox{Ao}. The
periods of these periodic orbits are unbounded as A\— Ag. There is an € close to 0 such
that if A€ [Xo,Ao+e] (or Ae[Ao—¢, o)), then &= f(z,)\) has exactly one periodic orbit in
the family of T'.

A.3.2 Hopf Bifurcation in Infinite Dimensions

The most general result on the existence of periodic solutions in infinite dimensions for
equations of the form

d
d—1:+Lu+f(,u,u) =0

is gained by CRANDALL and RABINOWITZ [10]. They work in a real Banach space X with
complexification X,=X +iX and L is the densely defined linear operator on X (and on
its complexification X,.). The Banach spaces X, C X with the norms ||-||, are defined
by

Xa = D((L+rD)?)
I-lla = (L+rD)%]  for @€ Xa,

where ||-|| is the norm in X and r > —Re\ for all ) €spec(L) such that the fractional
powers (L+rI)* are defined for a>0.
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(HL) (¢) —L is the infinitesimal generator of a strongly continuous semigroup
T(t) on X,

) T(t) is a holomorphic semigroup on X,

) (M[—L)™! is compact for A in the resolvent set of L,
(iv) i is a simple eigenvalue of L,
(v) ni¢spec(L) for n=0,2,3,....

(Hf) There is an a€[0,1) and a neighborhood € of (0,0) in R x X, such that
feC?(Q,X). Moreover f(u,0)=0 and f£,(0,0)=0 if (u,0)€Q.

(HB) Ref'(0)#0.

The fraction « is fixed at the value given by (Hf) where f,(u,z) denotes the Frechét
derivative of f with respect to z. This is a bounded linear operator from X, — X (and
a fortiori from X; —X). By (HL)(iv) ¢ is an I-simple eigenvalue of L regarded as a
mapping of X;. into X. The general definition of K -simple eigenvalues is given below.

Definition A.3 Let B(X,Y) denote the set of bounded linear maps of real Banach spaces
X intoY. Let L, K€ B(X,Y), N denotes the null space and R the range of the respective
operators. Then n€R is a K-simple eigenvalue of L if

(i) dimN(L—pK) = codimR(L—pK) = 1 and,

(it) if N(L—uK) = span{zo}, then Kxzo¢ R(L—pK).

This definition is needed here for complex Banach spaces (the complexifications are NN,
and R.) and with K=1.

Hence if zq€ N (L—il)\ {0}, then there are continuously differentiable functions z(u),
B(u) defined for small |p| such that

(L + fo(u,0))z () = B(n)z(1)
z(0) = zo, B(0) = i.

So B(u) is the unique continuation of the purely imaginary eigenvalue and (Hp3) is the
transversality condition of the classical Hopf theorem.

Now JF can be define as a mapping of a subset of R xR x Ca,(R,X,) into Cy(]0,27],X4)

F(p, o u)(r) = u(r) — T(pr)u(0) + p / T(p(r — €))f (1, u(€))de

and the infinite dimensional version of the Hopf theorem can be stated.
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Theorem A.6 (Hopf Bifurcation in Infinite Dimensions) Let (HL), (Hf), and
(HB) be satisfied. Then there are positive numbers €, n and continuously differentiable
functions (p,p,u): (=n,m) = R xR x Cor(R,X,) with the following properties:

(a) F(o(s),u(s),u(s))=0 for |s|<n
(b) u(0)=0, u(0)=0, p(0)=1, and u(s)#0 if 0<|s|<n

(¢) If (p1,u1) eRxC(R,X,) is a solution of us+ Lu+ f(u,u) =0 of period 2mp,, where
lp1—1|<e, |u1|<e, and ||u||o <€, then there exist numbers s€[0,n) and 6 €|0,27)
such that uy(p17) =u(s)(7+6) for TeR.

Moreover, if f€C*1(Q,X,) orif f is real analytic, then the functions (p(s),u(s),u(s))
are respectively of class C* or real analytic.

The Hopf bifurcation theorem can be extended to a version with a concrete stability for-
mula as is given below. In the following N, denotes the complement of the null space and
f comprehends the right-hand side, i.e. the vector field, and not only the nonlinear part
without linear components as in the previous setting. Furthermore p is the continuation
of the purely imaginary eigenvalue, and the bifurcation parameter is called .

Theorem A.7 (Stability Formula for the Hopf Bifurcation) Let ACR open and
let X be an open subset of some Banach space E. The vector field f € C*(Ax X,E) has
f(+,0)=0. For \g€ A it yields

(i) {*iwe} are simple eigenvalues of Dy f(Xg,0)=A, where wy>0,
(ii) there are no eigenvalues of the form ikwy for k€ Z\{£1} and

(iii) DyRep(Xo) >0, where p(\) is the unique continuation of the eigenvalue of A for A
in a neighborhood of the critical Ay satisfying p(Ag)=1iwo.

Then there are C'-functions (z,T,)\):(—¢,e) — X x RT x A with the properties that for
each s € (0,e) there is a noncritical T (s)-periodic orbit ~y(s):=~y(z(s)) through z(s)
solving &= f(A(s),z), v(s)#y(t) for 0<s<t<e, and there are no other noncritical
periodic orbits of ©= f(\,z) in a neighborhood of (0,27 /wy,Ag) € X X RT X A.

If Re (spec(fl)\{:l:iwo}) <0 and sA(s)>0 for a parameterization |s|>0 of the branch

of noncritical peridic orbits y(s), then the bifurcation is supercritical and v(s) is orbitally
stable.

If sA(s) <0 for |s|>0, the bifurcation is subcritical and the branch of noncritical peridic
orbits y(s) is orbitally unstable.

With
sgn (s)\(s)) = sgn(fy(s)) = sgn (—j—;c?)
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it 1s mecessary that § <0 for a supercritical bifurcation. A subcritical bifurcation is equiv-
alent to 6 >0.

The Stability Criterion. Let ¢(£,1,():= f(Xo,&,n,() with components
v = (¢, ¢%¢°)
be the vector field according to the coordinates (€,m) of N and ¢ of N, with (p',0*)€N

and @3 €N, and
N &N, = kerDp & N,

0 —w
DS0|N:<WO 00)

The value of 0 can be computed with

such that

b = wo(‘P%u + Plog + Vs + ‘Pg22)
— P11 Pls T PLPT — PlaPs — 3203 + PT1P%e + PTapss + 0
where the subscripts of ¢ denote the respective derivatives, namely, p1:=D1p(0), @11:=
D2p(0) etc.
If ¢3, =0 then §=0, otherwise

< 4wk
and
¢ := ~[Dg(0)|n.] PD?9(0)[¢])"
where g is the Poincaré map g(xg) :=xo—u(27wo,xo) for the global solution u(-,xy) of

the initial value problem &= f(z), z(0)=ux,.

For the stability criterion see AMANN [1] or MARSDEN, MCCRACKEN [37].



A4. ROUTH-HURWITZ THEORY 91

A.4 Routh-Hurwitz Theory

Finally here is a survey of the formulas used from the theory of matrices.

Theorem A.8 (Routh-Hurwitz) The number k of roots of the real polynomial f(z)=
2" +bo2" 1+ a1 2" 2 +b12" 34+ (ag#0) which lie in the right half plane is given by
the formula

Ay Ag JAS
=V JAN LA
k (aOa 1, 21a 227 ) 2n1>

or equivalently
k = V(a0a Ala A3’ o ) + V(]-’ A27 A4’ o )

with A;, i=1,-n the successive principal minors of a square matrix H of order n, and V
the number of changes of sign of adjacent members in a finite sequence.

The Routh-Hurwitz Criterion. In order for all roots of the real polynomial f(z)=
2N +--- (ag=1>0) to have negative real parts it is necessary and sufficient that the
inequalities

A > O,Az > 0,"',AN >0

hold.

Vice versa the Hurwitz determinants can be computed out of the roots of the poynomial
with the help of Orlando’s Formula:

N(N-1) 1..N
AN—l == (—1) 2 H()\1+)\k)
i<k

See the book of GANTMACHER [17] for a comprehensive survey.
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B On Specific Systems

B.1 Planar Systems of Van der Pol Type

From the theory of electric circuits is known the following second order ordinary differen-
tial equation
e+ Af(2)t+z+at) =0

where via «a(t) a periodic forcing can be added to the nonlinear equation known as
Van der Pol oscillator (with a=0). Consider A to be a parameter of the system. Typi-
cally f is the integral of a quadratic polynomial such that it is a cubic-like function with
humps. For instance, take f'(zr)=x2?—1, such that f=2x3/3—x. Setting y=ci+\f'z
yields a system
et = y— Af(z)
y = —(z+a)

with just a single fixed point in zero. Its stability behavior depends on the trace of the
linearization that is A/e. The first equation is a quasi steady state and Af(z) represents
the slow manifold for £ small. Small perturbations lead to trajectories making big excur-
sions which have the shape of a duck. Recent work on such phantom ducks was done by
BRAAKSMA [4] merely with a polynomial of the form f/(z)=2?—2x and making use of
different time scales.

Independent of ¢ there occurs a Hopf bifurcation for A=0 and the above system is purely
linear. For ¢ =1 it already is in normal form and the branch of periodic solutions can be
parametrized in a way that A(s)=0. The Hopf bifurcation is neither subcritical nor su-
percritical and the period of the bifurcating solution grows from 27 to oco. This resembles
the case of SYSTEM (3.11) although for the Van der Pol oscillator there is no homoclinic
orbit that bounds the amplitude.

Now consider the special Liénard equation with f'(\,z)=z%—\

i+ (@ —=Ni+2z=0.

Tranformed to a planar system it has the same linearization in zero as the above system
such that a Hopf bifurcation occurs for A=0. It is already in normal form and the stability
criterion easily computes to § = 2mwp],; = —4w. The bifurcating branch is supercritical.
A change in sign of the polynomial f, i.e. f'(z)=\—2?, gives a positive § =2mp],; =4n
and the branch is subcritical.

Adding diffusion terms (and appropriate boundary conditions) yields the following sys-
tem.

Example B.1 (Van der Pol Oscillator with Diffusion)

et = diAz + y—f(\z)
y = dAy — =z
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When the zero solution is stable there is no activator present in this system (conditions
(c1) — (c3) cannot be satisfied, diffusion cannot destabilize the constant zero solution).
No homoclinic orbit and no saddle point occurs for the kinetic system. The possible limit
sets are the constant zero and (a) limit cycle(s).

The wave bifurcation is not applicable since it does in principle not occur for planar sys-
tems. The conclusion is that this system cannot be treated with the methods introduced
in the present work.

B.2 Fitz-Hugh—Nagumo

This system is considered to be a model for the Hodgkin-Huxley equations describing the
physiological phenomenon of signal transmission across nerve axons. The difference to
the previous example is that it has multiple steady states.

Example B.2 (Fitz-Hugh-Nagumo) Let f(v) be a cubic polynomial with negative
leading coefficient and three real roots at 0 < wv; <wvy. Let §/v be small enough that
f(v)—(6v)/~ still has three real Toots.

u = 0v — yu

b= vy + f(v)—u on|z] < LeR,t>0

with homogeneous Neumann boundary conditions

ve(+L,t) =0, fort > 0.

Theorem B.1 FEwvery nonconstant steady state solution of the F-H— N system is unstable.

Sketch of the Proof (after SMOLLER [44]): A steady state solution satisfies the scalar

problem
)
Vge + f(V) — 71) =0, v (xL)=0

since u can be eliminated from v, + f(v) —u=0 by the unique solution of §v—~yu=0.
The linearized operator of the F-H—N system at the nonconstant steady state solution

(6v(z)/7v,v(x)) contains an element with positive real part in its spectrum. With this

linearized operator A(A)( - ) defined by A(A\)w :=wg, + <f’(v) - %) w the eigenvalue

problem reads
AMw = Aw, w,(£L) = 0.

It has to be shown that there is an eigenfunction w#0 with A>0. Let u(\) and v())
denote the supremum of the sectrum of A(\) with homogeneous Neumann or Dirichlet
boundary conditions, respectively. Let v(z) be a nonconstant solution, then it follows that
vz(x) Z0. Now v, serves as eigenfunction of A(0) with homogeneous Dirichlet boundary
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condition corresponding to the eigenvalue A=0. The Sturm comparison theorem gives
p(A) >v(A) and especially p(0) >v(0) >0. Writing () in a variational form

u(A) = sup (AN)w,w) < c

weW?, ||w||2=1

it can be shown that x()) is bounded from above uniformly in A. This together with ()
being a continuous function yields the existence of a A >0 which solves u(A) =\ such that
there is a w0 with

O

Note that this argumentation fails in case of a diffusion term in that equation of the system
which has no unique solution. Therefore nonconstant steady states could be observed for
the models of the present work (see CHAPTER 4).

The F-H—N system is the example most cited for periodic traveling waves. In a limiting
case for § =y=0 the variable u is a quasi steady state. With new coordinates & =z + 0t
and then investigating the case of wave velocity =0 where ( - )’ denotes d/d¢ it reads

and with F'(v) being the integral of f, it has the Hamiltonian

w?
H(v,w) = 7+F(v)—uv.

In the case of =0, the system has a homoclinic orbit and for a certain @, it has two
heteroclinic orbits connecting the outer fixed points. The existence of traveling wave
trains is proved by isolating blocks which can be constructed about the limiting orbits for
small § (see CONLEY [9]).

It is tempting to think of the Hamiltonian of CHAPTER 3 to bring on a similar result
in the case of the CO-oxidation with hysteresis in the phase transition. In this chapter
the Hamiltonian was not received by a transformation to traveling wave coordinates but
by neglecting the spatial operator and transforming solely the kinetic system. Without
hysteresis one can follow the F-H—N approach (see FLACKE et al. [15]) but this is not
possible if a unique quasi steady state for the equation of the phase transition cannot be
assumed.

Nevertheless in either case the periodical spatio-temporal solutions can be observed nu-
merically.
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B.3 Field—Noyes

These equations serve as a model for the Belousov-Zhabotinsky reaction and have the
form:

Example B.3 (Field-Noyes)

= gAu + a(v—uv+u— pu?)
v o= eAv + al(yw—v-—uv)
0 = e3Aw + §(u—w)

Their kinetic part is also known as Oregonator and there is a whole chapter in the book
of MURRAY [38] describing the relaxation oscillation detected for this system. As is
shown in SMOLLER [44], the domain > ={(u,v,w):0<u<qa,0<v<b,0<w<c} with
a>max(1,871), ¢>a, b>~c is positively invariant for this system with positive parame-
ters.

It will not show a wave bifurcation, as can easily be seen with the following computations.
Linearization at the zero solution yields —detA= —(d++d) <0 such that (C3) —detA >0
is always violated for positive parameters.

The only other positive equilibrium has coordinates

and the Jacobian

A|(u87v87w8) = _ai US _ail(l + uS) O{716

The entries of this matrix have the following signs

- £ 0 |A2] = —(1—wv, —2Bu,) + vs — us + 2Pu,> S 0
— — + [, thereby | 405 = _05(1 — v, — 28u,) > 0
+ 0 - |A2s] = o 16(1 + uy) > 0

Even if (us,vs,ws) is a stable fixed point, (C5) is always violated for positive parameters
as can be seen when plotting the conditions as functions of the parameters.

A short note on where to look: It can be excluded that e3#0 causes a wave bifurcation,
because the only indefinite subdeterminant is |A12| with its only negative term —u,. To
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fulfill (C5) for either £;#0 or £57#0 this term —u, has to compensate for all the other
positive terms which is only possible for 5 <<1/2. But before that, A, gets negative.
No wave bifurcation can be detected in the B-Z reaction. Since this oscillating system
serves as a model for homogeneous catalysis, this result is not astonishing. In a fluid
phase the mobility of the different chemical reactants will not differ so much, and they
should not be regarded as the cause of spatio-temporal patterns.
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C Notations

C.1 Chemical Constants and Units

latm = 760 Torr = 1.01325x10° Nm 2 Pressure
lbar = 10°Pa = 10° Nm 2

1Torr = 133.322Pa = 1.33322 mbar

lcal = 4.1868] Energy

Tab. C.1: Physical and chemical units after ATKINS [2].

R = 8.31441

Ideal gas constant
mol-

L = 6.02205x10% mol * Avogadro constant

Tab. C.2: Some constants after ATKINS [2].

C.2 DMathematical Abbreviations

— 2 s
d’im . d'L/'Lm y 1=1,-N

tr(Aivis) ' = Qiyi; + Qigiy

‘Ai1i2| = Qg Aigiy — Qqin Aigiy

‘Zl(ﬂm) = A_D(,Um) = (aij)i,jg{l,...,N} _diag(dlﬂm2a"'adNﬂm2)
0 for ab>0,

V(a,b) := { 1 for ab<0

V(alaa2a"') = Z V(aiaai—l—l)
k= V((Io,A1,A3,‘“)+V(1,A2,A4,"')

km = V(laAl(dum)’A3(de)a"')+V(1’A2(dum)’A4(dum)’.“)

k=3 o km
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